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Dimension-down iterative algorithm
for the mixed transportation network design problem
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Abstract: An optimal dimension-down iterative algorithm
(DDIA) is proposed for solving a mixed ( continuous/
discrete) transportation network design problem ( MNDP),
which is generally expressed as a mathematical programming
with equilibrium constraints (MPEC). The upper level of the
MNDP aims to optimize the network performance via both the
expansion of existing links and the addition of new candidate
links, whereas the lower level is a traditional Wardrop user
equilibrium (UE) model. The idea of the proposed DDIA is to
reduce the dimensions of the problem. A group of variables
(discrete/continuous) are fixed to alternately optimize another
group of variables ( continuous/discrete). Some continuous
network design problems ( CNDPs) and discrete network
design problems ( DNDPs) are solved repeatedly until the
optimal solution is obtained. A numerical example is given to
demonstrate the efficiency of the proposed algorithm.
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he network design problem ( NDP) is concerned
T with the modification of a transportation network
configuration by adding new links or improving existing
ones, so that certain social welfare objectives are maxi-
mized (e. g. total travel time over network). How to se-
lect the location of these new links and how much addi-
tional capacity is to be added to each of these existing
links are motivating problems, which try to minimize the
total system costs under limited budget and account for
the route choice behavior of network users. The NDP can
be roughly classified into three categories: the discrete
network design problem ( DNDP) that deals with the se-
lection of the optimal locations ( expressed by 0-1 integer
decision variables) of new links to be added; the continu-
ous network design problem (CNDP) that determines the
optimal capacity enhancement ( expressed by continuous
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decision variables) for a subset of existing links; and the
mixed network design problem ( MNDP) that combines
both the CNDP and the DNDP in a network'"’. The NDP
can be generally formulated as a mathematical program-
ming with equilibrium constraints (MPEC). The determi-
nate user equilibrium (UE) assignment model or the sto-
chastic user equilibrium ( SUE) assignment model is
usually applied to describe the route choice behavior of
network users. The CNDP has been widely studied”™
since its variables are continuous and easy for designing
algorithms. There are also several studies on the
DNDP'"™". The MNDP involves both the discrete and the
continuous variables and can be generally expressed as a
nonlinear mixed-integer bi-level programming which is
normally difficult to implement'"’ .

This paper proposes an algorithm for solving the
MNDP, and its idea is to reduce the dimensions of the
problem by transforming it into an iterative solution of
some CNDPs and DNDPs. A numerical example is given
to demonstrate the efficiency of the proposed method.

1 Formulation of MNDP

The MNDP aims to find both the capacity expansions
of existing links (continuous decision variables) and new
link additions (0-1 decision variables) in order to mini-
mize the total travel time of the network users subject to a
budgetary constraint and the UE condition. The MNDP
without budget constraint is formulated as

inZ(y, u, x) = t + t(x,y,) +
min (y, u, x) Y xt(x) + Y x,t,(x,y,)

aeh, aeh,
zxata(xa’ y;) +¢Zga(ya) +¢zdaun (1)
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sty +y, <5, VYaed,
u, =0orl Va e A,

where Z is the comprehensive expense of the travel time
and construction cost; A, is the set of non-expanded
links, A, is the set of expanded links, and A, is the set of
new candidate links, A =A, UA, UA;; x, is the aggregate
flow on link a, a € A; x is a vector whose elements are
x,; ¥, is the original capacity on existing link a, a e A, U
A,; y, is the incremental capacity on expanded link a, a
€ A,; y is a vector whose elements are y,; y/ is the fixed
capacity on new candidate link a, a € A,; y, is the upper
bound of the capacity of link a, a € A,; ¢, is the travel
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time of link a, a € A; g,(y,) is the improvement cost
function of expanded link a, a € A,; d, is the construc-
tion cost per addition of new candidate link a, a e A,; u
is the 0-1 decision variable, u, =1 if link a(a € A;) is
added; otherwise, u, =0; u is a vector whose elements
are u,; ¢ is the relative weight of construction cost and

a

travel time.
x is the implicit function of y and # and it can be ob-
tained by solving the lower-level problem "'

min 7(y, u,x) = z JX”ta(w)dw +
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where T is the integral function; R is the set of origin
nodes; S is the set of destination nodes; r is the origin
node index, re R; s is the destination node index, s e S;
q,, is the travel demand between pair (r, s); f, is the
flow of path k between pair (r, s); L, is the set of paths
between pair (7, s); &, is the path/link incidence varia-
ble, which equals 1 if link a is on path k between pair (7,
s), otherwise 0.

The MNDP with the budget constraint is formulated as

min Z(y, u, x) = t +
nin Z(y, u, %) = 3 x,1,(x,)

aecA,

N oxt(x,y) + D x,t,(x, v (3)
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2 Dimension-Down Iterative Algorithm (DDIA)
for Solving the MNDP

The idea of the DDIA is to reduce the dimensions of
the problem. A group of variables ( discrete/continuous)
are fixed to alternately optimize another group of varia-
bles ( continuous/discrete). Some CNDPs and DNDPs
are solved repeatedly until the optimal solution is ob-
tained.

Suppose that ' = {u\”, u)”, u”, ...} is a feasible
solution with the budget constraint; e. g., let u® = {0,
0, 0, ..., 0}. uis fixed at u'” to optimize y; therefore,
the problem becomes a solution of a CNDP.

min Z(y, u'”, x) = xt(x) + Yxt(x,y) +
min Z(y ) = Y a,(x) + Y xl(x,5,)

acA, ach,

Z xata('xu’ y,u) + (b z ga(ya) + (T’) Z dltu(an)

aeA, ach, aeA,

(4)
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where x is the implicit function of y and it can be ob-
tained by solving the lower-level problem.

min T(y, ', x) = xut dw +
(a2 = ¥ [ 1,00 dw
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If it is the case with the budget constraint, the problem
to be solved is as follows:

a“a

minZ(y, u'”, x) = Y x,1,(x,) +
mit
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Solving the above CNDP and obtaining the solution y'”

(O (0 (0)
S Yoo V3o e

u.

}, then y is fixed at y” to optimize

min Z(y"”, u, x) = Y x,t,(x,) + > x,1,(x, ) +

YO u
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aeh, aecA, aeA,
s.t. u,=0orl VaeA,

where x is the implicit function of u and it can be ob-
tained by solving the lower-level problem.

minT(y”, u, x) = zf"tu(w)dw +
0

aeA,
" (0) Ya p
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If it is the case with the budget constraint, the problem

to be solved is as follows:

n’}’inZ(y(O),u, x) = Zxata(xa) +
Yy u

aeh,

2 xuta(‘xa’ yir())) + z 'xata('xu’ y;) (9)

aecA, aeA,
st Y g,(") + Y d,u, < budget
aeA, aeh,
u, =0orl Ya e A,

The above problems (7) to (9) are used to solve a
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1 (n (H

DNDP. Suppose that the solution is u'” = {u!", u",

(1
u, ,

.-}, then u is fixed at u'" to optimize y. In this
way, a series of solutions {#“ | and {y"“} (k=0, 1,
2, ---) can be obtained.

Because
Z(y,u” x) =2y u" x)=Z(y"” u'" x) (10)

the function value series {Z( y(k> ,u® x) ! are monotoni-
cally decreasing. They do not always converge to the
global optimal solution, but they can converge to a local
optimal solution. So, several initial values are taken for
testing in order to select the best from some local solu-
tions. Especially for the MNDP with the budget con-
straint, its solution usually depends on the selection of in-
itial values. The method of selecting the initial value u‘”

tions will be needed if analysis is done for all the possible
combinations of new candidate links. And it can be fore-
casted that the saved work for calculation will be greater
with the increase in the number of optimization variables.

5

8
Fig.1 The test network

. . . Tab.1 Link parameters for the test network
can be conducted by randomly taking O link, 1 link, 2 il W
. . . Nod
links, ---with the budget constraint. Link — ° e‘ Wory, a« B, c,ord, yoru
i
3 Numerical Example 1 12 3 1 10 2 M
2 1 3 10 2 5 3 hp)
A test network is given ( see Fig.1). Links 1 to 16 are 3 2 1 9 3 3 5 3
expanded links while links 17, 18, 19 and 20 are new 4 2 3 4 4 20 4 Y
candidate links. The link parameters and the OD matrix 2 i ? ; ; ;8 ? '15
. . . J6
are listed in Tab. 1 and Tab. 2, respectively. Let ¢ =1 7 3 9 1 1 10 4 v,
and the investment function g,(y,) =c,y,. 8 3 5 10 1 1 3 s
The objective function value of each iteration and the 9 4 2 45 2 8 2 Yo
optimal solution of the MNDP obtained from the proposed :(1) j Z ; ; ; 2 1o
. . . Y
solution algorithm are presented in Tab. 3. Note that here 2 5 3 6 4 10 g Yo
the DNDP is solved by the enumeration method while the 3 5 4 44 4 25 5 Yis
Hooke-Jeeves algorithm'>' is applied for solving the 14 5 6 20 2 33 3 Yia
CNDP. 15 6 4 1 5 5 6 Yis
. . 16 6 5 4.5 6 1 1 )
To see whether the proposed solution algorithm has 73 4 6 4 9 g )u‘“
. . . 1
found the optimal solution of the MNDP for this test net- 18 4 3 21 3 15 9 i
work, new candidate links 17, 18, 19 and 20 are com- 9 2 5 35 3 11 10 Uy
bined to obtain 16 possible combinations in all. A corre- 20 5 2 41 4 8 6 Uy
sponding CNDP is solved for each combination ( see Tab. Tab.2 OD matrix for the test network
4). In Tab. 4, the solution with a minimal objective Node | 5 3 P 3 P
function value isu = {0,0,1,1}, y=1{1.5625,1.1250, 1 0 0 0 3 5 5
3.6875,0,0,0.7500,0,0,0,0,0,0,0,0,0,15.187 5}, 2 0 0 0 0 0 4
Z = 403.346 0, which is consistent with the solution 3 0 0 0 0 0 0
found by the proposed solution algorithm. 4 0 0 0 0 0 0
It can be seen from the above results that only three 5 2 0 0 0 0 0
iterations are required for finding the optimal solution 6 10 4 3 0 0 0
through the proposed solution algorithm, while 16 itera-
Tab.3 Solution of the test network
Iteration Fixed value Solution z
> ) _
. Solving 2 =10,0.0.0] y 10,2.562 5,4.000 0,3.000 0,0,0,0, 474.918 4
CNDP 3.3750,0,0,0,0,0,0,0.1250,16.3750]
Solvi 0 = . 3.
5 olving 10,2.562 5,4.000 0,3.000 0,0,0,0, u® = 10.0.1.1] 124,998 7
DNDP 3.3750,0,0,0,0,0,0,0.1250,16.3750}
Solvi = . . .
3 olving w2 10.0.1.1] y 11.5625, 1.1250, 3.6875, 0, O, 403. 346 0
CNDP 0.7500,0,0,0,0,0,0,0,0,0,15. 187 5}
A Solving  y" = {1.5625, 1.1250, 3.6875, 0, 0, u® 100,111 403.346 0
DNDP 0.7500,0,0,0,0,0,0,0,0,0,15.187 5} T Convergence
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Tab.4 Solution under the fixed u

u y Z
{0,0,0,0} 10,2.5625,4.0000,3. 0000,0,0,0,3.3750,0,0,0,0,0,0,0.1250,16. 3750} 474.918 4
{1,0,0,0} 10,3.1250,4.2500,3.3125,0,0,0,1.6250,0,0,0,0,0,0,0.1250,16. 6250} 471.242 4
{0,1,0,0} 10,3.1875,1.7500,3.3125,0,6.5000,0,3. 8125,0,0,0,0,0,0,0,16. 2500} 473.0195
10,0,1,0} {1.6250,1.0000,4.2500,0,0,0,0,0,0,0,0,0,0,0,0,16.5625| 437.4500
10,0,0,1} {0,2.8750,4.3125,2.8750,0,0,0,3.3750,0,0,0,0,0,0,0,16. 8750} 440. 6147
{1,1,0,0} {0,3.0625,0.7500,3.3125,0,8.5625,0,1.6250,0,0,0,0,0,0,0,16.562 5} 465.360 6
{1,0,1,0} {0,2.8125,4.1250,0,0,0,0,0,0,0,0,0,0,0,0,16. 6250} 439.0100
11,0,0,1} 10,3.2500,4.3750,3.3125,0,0.1250,0,1. 6250,0,0,0,0,0,0,0,16. 750 0 | 439.945 1
10,1,1,0} {3.0000,0.2500,0.1875,0,0,7.6250,0,0,0,0,0,0,0,0,0. 187 5,16. 562 5| 431.005 8
10,1,0,1} 10,2.0625,0.7500,3.3125,0,7.7500,0,3.7500,0,0,0,0,0,0,3.50 12. 750} 450.2416
10,0,1,1} {1.5625,1.1250,3.6875,0,0,0.7500,0,0,0,0,0,0,0,0,0,15. 187 5} 403.346 0
10,1,1,1} 13.1250,0.1250,0.8750,0,0,9.1250,0,0,0,0,0,0,0,0,3.2500,11. 1250} 414.8057
{1,0,1,1} {0.6875,1.5000,3.3750,0,0,1.5000,0,0,0,0,0,0,0,0,0,16.5000 406. 130 8
{1,1,0,1} 10.1875,2.8750,2.0000,3.3125,0,6.7500,0,1. 625 0,0,0,0,0,0,0,0,16. 6250} 444.4567
i1,1,1,0} {2.1250,0.6250,2.3750,0,0,4.2500,0,0,0,0,0,0,0,0,0,16.5625} 437.6232
11,1,1,1} {1.0000,1.5000,1.7500,0,0,5.7500,0,0,0,0,0,0,0,0,0,17.7500} 410. 800 2
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