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Abstract: A min-max optimization method is proposed as a
new approach to deal with the weight determination problem in
the context of the analytic hierarchy process. The priority is
obtained through minimizing the maximal absolute difference
between the weight vector obtained from each column and the
ideal weight vector. By transformation, the constrained min-
max optimization problem is
programming problem, which can be solved using either the
simplex method or the interior method. The Karush-Kuhn-
Tucker condition is also analytically provided. These control
thresholds provide a straightforward indication of inconsistency
of the pairwise comparison matrix. Numerical computations
for several case studies are conducted to compare the
performance of the proposed method with three existing

converted to a linear

methods. This observation illustrates that the min-max method
controls maximum deviation and gives more weight to non-
dominate factors.
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s one of the most popular methods for multi-criteria
decision-making, the analytic hierarchy process
( AHP) has been successfully used in a variety of

fields" ™, including fuzzy membership determination'",

s (58]
weapon system evaluation

, comprehensive evaluation
of naval tactical missile systems'” and attack helicop-
ters''”, and many other applications'".
Peniwati'"”
for aggregate individual judgments and priorities in the
AHP. Takeda and Yu'" explored a framework for unify-
ing existing weight determination methods. The interested
reader may consult with the surveys reported in Refs. [ 14

—15] for additional details.

Forman and
provided general guidelines and considerations
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One of the key components in the AHP is the determi-
nation of weight or priority vector w = {w,, w,, ..., w,}
associated with different decision criteria from the so-
called pairwise comparison matrix. Suppose that the rela-
tive importance of the i-th criterion with respect to the j-th

criterion are defined by the ratios A(x,)/A(x;), i,j=1,

2, ..., n and expressed in the form of a square matrix A,
namely,
Ax)  Alx) A(x) O
LA(x) Alx,) A(x,) L
HAx) Ax) ea=
A=[a;] = Ax) Alx,) A(x) 7 (D
O : ;O
HAx) A Ay 5
[A(x,) A(xy) A(x,)

A 1is a reciprocal matrix and satisfies the property of re-
ciprocality; i.e., aza; =1 fori,j=1,2,...,nand a, =1
(i=1,2,..,n). An important concept involved in the
pairwise comparison matrix is consistency. The matrix A
is said to be consistent if a,a, =a,; or a;, =w,/w, for any
i,j,k=1,2,...,n, which means that the pairwise evalua-
tion of relative importance has good agreement across the

different decision criteria'.

In reality, the entries of A
are not known and need to be estimated through a series of
pairwise comparisons. In designing the comparison matrix,
reciprocality is automatically preserved. The level of prior-
ity of x, over x; is quantified numerically. The more x; is
preferred over x;, the higher the numerical level associated
with this pair. The level of the priority of x; over x; is al-
ways equal to 1, as shown by the diagonal elements of A.
If x, is not preferred over X, then one considers the level
of priority attached to the swapped pair of the elements.
The number of necessary comparisons is, therefore, n(n —
1)/2. It is expected that a unique weight vector can be ob-
tained based on the pairwise comparison matrix.

The classical method originally proposed by Saaty'"
uses the principle eigenvector of the comparison matrix as
the weight vector. The eigenvector method (EVM) is
based on the fact that small perturbations of the eigenval-
ues of the elements a, from the perfect ratios w,/w; lead
to small perturbations of the eigenvalues of the compari-
son matrix A around its eigenvalues. Mathematically, the
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EVM requires solving the eigenvector that corresponds to
the largest eigenvalue of A; i.e.,

Aw=A_w (2)

max

The solution based on the EVM is not satisfactory when
the inconsistency of the decision-makers’ priority is
large''” . Also, the property of consistency implies that
the ordering of the decision criteria should not be an influ-
ential factor in determining the weight vector. Clearly,
the EVM does not satisfy this property.

Other methods for deriving the weight vector from the
pairwise comparison matrix have also been studied in the
literature. These methods are primarily optimization-
based and the solution is not affected by the ordering of
" In an optimization based meth-
od, a rational objective function is established under
proper constraints. Optimization techniques are then used
to solve the mathematical programming problem resulting
an optimum weight vector that minimizes or maximizes
the objective function. Chu et al. """ proposed the direct
least squares method and the weighted least squares meth-
od (WLSM). Sun and Deng”g] also studied the perform-
ance and application of the WLSM. The WLSM method
is based on the assumption that the elements of the pair-

.. . . (17
the decision criteria'

wise comparison matrix should satisfy the property a, ~
w,/w;. Since this is equivalent to a,w,~w,, the priority
assessment can be formulated as a constrained optimiza-
tion problem; i.e.,

n n

min Y Y (a,w,-w)’ (3)
i=1 j=1
s.t w, =1
i=1
w,=0 i=1,2,...,n

It is shown that the solution of this optimization problem
is equivalent to the solution of the simultaneous equation:

Cw=¢ (4)

where C=A + A" -5, 5 =diag(n,, 9, ---»,) » m; =

z (a;+1),j=1,2, .,nand E={A, A, ..., A}
i=1

Crawford and Williams'™' developed the logarithmic
least squares method (LLSM) for weight determination.

The LLSM is also known as a geometric mean method
and it minimizes the objective function as

n n

min z 2 (Ina; - Inw, +lnwj)2 (5)
i=1 j=1
S. t. Hwi =1
i=1
w, =0 1 =1,2,...,n

i

It is proved that the solution of this optimization prob-
lem can be given as the geometric mean of the column of
the comparison matrix A",

w, = H (ai].)" i:1,2,...,n (6)

An excellent comparison analysis between the common-
ly used methods for deriving the weight vector can be
found in Refs. [15, 17].

1 Modeling

It is known from the structure of the pairwise compari-
son matrix that when the pairwise comparison matrix is
consistent, each column of A will produce a weight vec-
tor identical to the weight vector obtained from any other
column. Furthermore, under consistency, all the existing
methods should produce the same weight vector. Define
the difference between the weight vector obtained from
each column and the ideal weight vector as

£y =a;w, —w, i,j=1,2,...,n (7)

When consistency holds, & p should equal zero for all i
and j. It is practically impossible, however, to maintain
the transitivity of the entries of A because of the involve-
ment of a large amount of subjective judgment in the
process of quantifying the comparison matrix.

In reality, the comparison matrix is more likely to be
inconsistent. Naturally, the difference e, (i,j=1,2, ...,
n) become a direct indicator reflecting such inconsisten-
cy. It is,
difference as an objective function to minimize. Since the

therefore, rational to accept the maximum
minimized maximum difference is independent of the so-
lution methods, and depends only on the inconsistency of
the comparison matrix, it can be used as an ideal index to
evaluate the inconsistency. For instance, denote a prede-
fined threshold for accepting any difference g, from a
specified comparison matrix as . If the min-max differ-
ence ¢, exceeds ¢}, one can suspect and reject the validity
of the weight vector obtained from an inconsistent com-
parison matrix. Otherwise, the obtained weight vector
can be accepted at a desired level of inconsistency. In this
paper, an alternative method for determining the weight
vector from the pairwise comparison matrix is proposed.
This method is implemented through solving a min-max
optimization problem. While the threshold J can be set
up independently by decision makers and only affects the
decision of accepting or rejecting the weight vector, the
min-max difference &; is obtained using mathematical
programming methods.

2 Formulation

The method we propose here is to minimize the largest
absolute difference \ £ for all i,j=1,2, ..., n, which

can be formulated as a min-max optimization problem

}®

= [a,w -w,

s. t. iwi =1
i=1

min z = ;,,-31,?,)_(_,"{ e,
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w, =0 1 =1,2,...,n

i

instead of just minimizing the largest
, it might be more preferable to

In some situations,
absolute difference | £y

<

iWis in which ﬁU(i,j =1,2, ..., n) are positive constant
coefficients or thresholds, also predefined by the decision
makers.

This strategy may eliminate the scale or unit
problem and it can be more reasonable. Following this
consideration, the min-max optimization problem now

becomes

min max { |a,w, -w, |, i,j=1,2,...n}  (9)

s. t. Y ow, =1
i=1
\a,jwi—wi \ <B;w, i,j=1,2,...,n
w, =0 i=1,2,...,n

Clearly, the problem defined by Eq. (8) is only a spe-
cial case of problem (9) because if one sets up 8, as very
large numbers, the second constraint in problem (9) be-
comes relaxed and problem (9) degrades to problem (8).
Certainly, if 8, are set up as very small numbers, prob-
lem (9) may end up with no feasible solutions.

In the following, only the problem formulated in (9)
will be studied due to its generality. Define d =
max { \ a;w; - ,j=1,2,...,n). It is straightfor-
ward to see that d> \ a;w; —w,
(a;w, -w,) and d= - - w,). Using this extra vari-
able d, the min-max problem given by (9) can now be

reformulated as a linear programming (LP) problem,

, or equivalently, d=
- (a,w,

min z =d
S. t. d+a;w, -w,=0
d-aw; +w,=0

a;w; +(B,;, —1w,=0
—a;w, +(B; + DHw,;=0

,,
3w =1
i=1

i,j=1,2,...,n

(10)

d,w,; =0

3 Karush-Kuhn-Tucker Condition

The LP problem formulated in (10) can be solved by
the simplex method. However, using the interior method
can provide more insights in terms of the structure of this
LP problem. Introduce slack variables §;, 67, 1, and n;
(i,j=1,2,...,n) to the constraints. The LP problem
(10) is now equivalent to

min z =d

w, =6, +d=0
W -8, +d=0

a;w, +(B; —1)w, -n,; =0

—a;w, +(B; + 1w, —n; =0

1 - iw[ =0
i=1

(1)

S. t. a;w; —

—a;w; +w,;

d, w,, 8,, 8, n;» ;=0 i,j=1,2,...,n

Using the barrier method, the constrained LP problem
(11) can be converted to an unconstrained LP problem
whose objective function can be expressed as the La-
grange.

: ’ ’ ’ ry
min l( d, /\, Wi, 5,']” 6,75 771:,'7 771']'» 77,',‘5 77,']" 9,:[, 0,1) -

d+/\(1 - iwl) + 22 m(a;w, -
Ly

i=1 i=1j=

Z Z mi( —a,w; +w, =8} +d) +

z Z 0ll[a‘/ J +(ﬁu

n

)Y Z 051 —a;w; +(B; + Dw;, —m;] -

i=1 j=1

w, =9, +d) +
1_77[/] +

,u[lnd+ ZIHw + 22 (In8, +1n &) +In n, +In 7))
i=1j=
(12)
where A, 7r; and 77} are the Lagrange multipliers and . is

the barrier coefficient. The condition for an unconstrained

LP to be minimized requires
VI(d, A, w,, 8,85 Ty My My 0, 05) =0 (13)

where V represents the derivative of [ with respect to all
the variables; i.e.,

88’ om; om'; om,

u

Vl:{il al 81’ al al al al al

ad 9N ow, 95,
al ol ol }T

am', 06, 06’

Taking expansion of (13) gives the Karush-Kuhn-
Tucker (KKT) conditions™.

n n

6.. = i 6’ _L’ &’ i
i ; ) n; = 9, ur; 0,
a;w; —w, =6, +d=0
—a;w; +w, 6;,+d—0
a;w; +(B,; ~1)w, -, =0

—a;w, +(B; + 1w, —n; =0

The aforementioned nonlinear algebraic equation sys-
tem has identical numbers of equations and unknowns.
Therefore, the solution to the algebraic equation system is
definite. One can symbolically express weight vector w =
{w,, w,, ... the objective function d and the La-
grange A in terms of y. According to the interior method,

s w, 1,
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taking the limit when u—0, the solution of this nonlinear
algebraic equation system gives the optimal weight vec-
tor.

4 Case Studies

In this section, numerical examples are presented to il-
lustrate the method and to compare it with other common-
ly used ones. It should be pointed out that, in the follow-
ing examples, B, are set up as very large positive num-
bers so that their role of restricting the relative difference
is diminished.

Example 1 Saaty"" reported that a fresh Ph. D. grad-
uate made the following paired comparisons when he tried
to assess the relative importance of six job selection crite-
ria, namely research, growth, benefits, colleagues, loca-
tion, and reputation (in that order). Tab. 1 gives such a
pairwise comparison matrix.

The weight produced by the min-max method and three
other methods are given in Tab. 2. The value of the ob-
jective function of the min-max optimization problem is

0. 153. The numbers inside the parentheses are ranking
information. The last two rows in Tab. 2 show the 1-norm
and the 2-norm, which are used to measure the perform-
ances of these different methods.

n n

2 > lag—w/w |

izl j=1

[i i(a,] _wi/wj)z 172

i=1 j=1

S, =
S, =

In general, the solutions remain fairly similar since all
the methods provide identical ranking for “colleagues”,
“location” and “reputation”. But “research”, “growth”,
and “benefits” are ranked differently by various methods.
The WLSM gives the same ranking as the min-max meth-
od does. However, the EVM and LLSM give distinct
ranking in terms of these three jobs. In this particular
case, in terms of both the 1-norm and the 2-norm crite-
ria, the LLSM gives the best solution, and the WLSM
and the min-max method give the worst solutions.

Tab.1 Relative importance of job selection matrix for Ph. D. graduates

Job Research Growth Benefits Colleagues Location Reputation
Research 1 1 1 4 1 172
Growth 1 1 2 4 1 172
Benefits 1 1/2 1 5 3 1/2
Colleagues 1/4 174 1/5 1 1/3 1/3
Location 1 1 1/3 3 1 1
Reputation 2 2 2 3 1 1

Tab.2 Comparison of numerical results for job selection matrix

Job EVM( rank) WLSM (rank) LLSM( rank) Min-max( rank)

Research 0.159 (4) 0.174 (3) 0.169 (4) 0.178 (3)
Growth 0.189 (3) 0. 190 (2) 0.189 (2) 0.217 (2)
Benefits 0.198 (2) 0.171 (4) 0.187 (3) 0.173 (4)
Colleagues 0.048 (6) 0. 050 (6) 0. 050 (6) 0.058 (6)
Location 0. 150 (5) 0.130 (5) 0. 150 (5) 0.112 (5)
Reputation 0.256 (1) 0.285 (1) 0.255 (1) 0.262 (1)

S, 12.907 14. 041 12. 826 15. 267

S, 3. 645 4.127 3. 608 3.904

Example 2 The wealth-of-nations problem has been
used by many authors for the evaluation of different prior-

itization methods""

. The wealth-of-nations pairwise com-
parison matrix is given in Tab. 3. It represents the respon-
ses of an economic expert, who compresses the wealth of
seven countries in 1972 using the pairwise comparisons
within the Saaty scale 1/9 to 9.

The priorities generated by the four methods are repre-
sented in Tab. 4. Clearly, different methods give different
priorities, but an identical final ranking of the wealth of
nations. In this case all the methods preserve the same
rank because the comparison matrix is rather consistent.
Its consistency index is CI =0. 101 and the consistency ra-
tio is CR =0. 077.

The last two rows in Tab. 4 list the performance indica-
tors S, and S, for the different methods. Clearly, in this
particular problem the LLSM and min-max methods have
the best performance in terms of 1-norm and 2-norm, re-
spectively. The EVM and WLSM are in the middle, simi-
lar to the previous example. The value of the objective
function in the min-max optimization problem is 0. 161. It
means that the maximal difference between the estimated
priority and the actual priority is (&;),,, =&, =0.16l,
while they are (&), =&, =0.500 for the EVM; (&) .
=g; =0.224 for the WLSM; and (&), =&, =0.514
for the LLSM, respectively. Since the objective of the
min-max optimization method is to control the maximum
difference, it is clear that it is the best method in terms of

max
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reducing the individual differences between the column-
based priority and the ideal priority. The comparisons be-
tween the min-max method and others gives an idea of the

performance of this new method. It can be seen from these
two classic, numerical examples that the min-max method
can provide a reasonable solution for priority setting.

Tab.3 1972 wealth-of-nations matrix
Country usS USSR China France UK Japan W. Germany
(SN 1 4 9 6 6 5 5
USSR 1/4 1 7 5 5 3 4
China 1/9 1/7 1 1/5 1/5 177 1/5
France 1/6 1/5 5 1 1 1/3 1/3
UK 1/6 1/5 5 1 1 1/3 173
Japan 1/5 1/3 7 3 3 1 2
W. Germany 1/5 1/4 5 3 3 172 1

Tab.4 Comparison of numerical results for 1972 wealth-of-nations matrix

Country EVM( rank) WLSM( rank) LLSM( rank) Min-max( rank)
UsS 0.427 (1) 0.487 (1) 0.417 (1) 0.474 (1)
USSR 0.230 (2) 0.175 (2) 0.231 (2) 0.171 (2)
China 0.021 (6) 0. 030 (6) 0. 020 (6) 0.042 (6)
France 0.052 (5) 0.059 (5) 0.054 (5) 0. 060 (5)
UK 0.052 (5) 0.059 (5) 0.054 (5) 0. 060 (5)
Japan 0.123 (3) 0.104 (3) 0.128 (3) 0.114 (3)
W. Germany 0.094 (4) 0.085 (4) 0.096 (4) 0.079 (4)
S, 44. 146 40.779 44. 996
S, 13.708 11. 158 14. 000 10. 012
5 Conclusion References

A min-max optimization method is proposed in this pa-
per as an alternative to deal with weight determination
problem in the context of the AHP. The priority is ob-
tained through minimizing the maximal absolute differ-
ence between the weight vector obtained from each col-
umn and the ideal weight vector. A more general setting
is achieved by introducing control thresholds over relative
differences between the column-based weight vector and
the ideal weight vector. By transformation, the constrain-
ed min-max optimization problem is converted to a linear
programming problem, which can be solved using either
the simplex method or the interior method. The KKT
condition is also provided analytically. These control
thresholds and the values of the objective function provide
a straightforward indication of inconsistency of the pair-
wise comparison matrix. Based on two examples, it is
shown that the sum of absolute value of deviation using
the min-max method tends to be greater than that using
the EVM, the WLSM and the LLSM, while the sum of
square of absolute value of deviation using the min-max
method tends to be less than that using the EVM, the
WLSM and the LLSM. This observation illustrates that
the min-max method controls the maximum deviation and
gives more weight to non-dominant factors.
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