Journal of Southeast University (English Edition)

Vol. 28, No. 2, pp. 256 —260

June 2012 ISSN 1003—7985

On reducibility of a class of nonlinear quasi-periodic systems
with small perturbational parameters near equilibrium

. - 1,2
Li Jia>

Zhu Chunpeng’

(' Department of Mathematics, Southeast University, Nanjing 211189, China)

(*Mathematics and Physical Sciences Technology, Xuzhou Institute of Technology, Xuzhou 221008, China)

Abstract: Consider the reducibility of a class of nonlinear
quasi-periodic with multiple eigenvalues
perturbational hypothesis in the neighborhood of equilibrium.
That is, consider the following system ¥ = (A + eQ(1))x +
eg(t) + h(x, t), where A is a constant matrix with multiple
eigenvalues; h = O(x*) (x—0); and h(x, 1), Q(1), and g(1)
are analytic quasi-periodic with respect to ¢ with the same
frequencies. Under suitable hypotheses of non-resonance
conditions and
sufficiently small g, the system can be reducible to a nonlinear

systems under

non-degeneracy  conditions, for most
quasi-periodic system with an equilibrium point by means of a
quasi-periodic transformation.
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e consider the linear system ¥ = A(t)x, x € R,

where A(t) is an n x n matrix. The well-known
Floquet theorem tells us that if A(¢) is a T-periodic ma-
trix, then the linear differential equation ¥ = A(#)x is re-
ducible to the constant coefficient differential equation X
= Bx by a T-periodic change of variables. For the quasi-
periodic coefficient system, Johnson and Sell "' proved
that if the quasi-periodic coefficients matrix A( ) satisfies
full spectrum conditions, then ¥ = A (¢) x is reducible.
That is, there exists a quasi-periodic non-sigular transfor-
mation x = (1)y, where (1) and (1) ! are quasi-peri-
odic and bounded, such that ¥ = A(¢)x is transformed to
y =By, where B is a constant matrix. In Ref. [2], Jorba
and Simé considered the reducibility of the following line-
ar quasi-periodic system ¥ = (A + eQ (1)) x, x € R,
where A is a constant matrix with different eigenvalues.
They proved that under the non-resonance conditions and
the non-degeneracy conditions, there exists a non-empty
Cantor subset E, such that for £ € E, the system is reduc-
ible. In Ref. [3], Xu considered the linear quasi-periodic
system ¥ = (A + £Q(1))x,x € R", where A is a constant
matrix with multiple eigenvalues. He proved that under
the non-resonance conditions and the non-degeneracy con-
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ditions, there exists a non-empty Cantor subset E, such
that the system is reducible for ¢ € E.

In Ref. [4], Eliasson studied the one-dimensional line-
2

ar Schrodinger equation iiiTZq + O(wt) g = Eq, where Q is
an analytic quasi-periodic function and E is an energy pa-
rameter. The result in Ref. [4] implies that for almost ev-
ery sufficiently large E, the quasi-periodic system is re-
ducible. Recently, a similar problem was considered by
Her and You "',

In 1996, Jorba and Sim6'® extended the conclusion of
the linear system to the nonlinear case. They considered
the quasi-periodic system ¥ = (A + eQ (1)) x + gg(1) +
h(x,t),x € R", where A has n different nonzero eigen-
values A,, and proved that under some non-resonance
conditions and some non-degeneracy conditions, there ex-
ists a non-empty Cantor subset E € (0, g,), such that the
system is reducible for ¢ € E.

Wang and Xu'”' considered the nonlinear quasi-periodic
system ¥ =Ax +f(x, 1), x e R®. They proved that with-
out any non-degeneracy condition, the system is reduci-
ble.

Motivated by Refs. [3,6], in this paper we extend the
results in Ref. [6] to the general case of multiple eigen-
values.

1 Preliminaries

Definition 1 A function f is called a quasi-periodic
function with frequencies w = {w,, w,, ..., w,} if f(1) =
Flw,t, w,t, ..., w,t), where F(0,,6,, ...,0,) is 2 peri-
odic in all arguments and 0, =w,t, i=1,2, ..., r. If F(@)

(0={6,.0,.....0,}) is analytic on D, = {# e C" | | Img,
<p,i=1,2,...,r}, we call f(f) analytic quasi-periodic on
D,. Denote the sup-norm of f on D, by | f |, =

sup | F(0) |.

Definition 2 A matrix function Q1) =(q,(1)),; <,
is called analytic quasi-periodic on D, if all ¢,() (i,j =1,
2, ..., n) are analytic quasi-periodic on D,.

Define the norm of @Q by

QI p, = MMax, ; i<, [ qi I D,

Clearly, [ Q,0, | n, = Q| D, | Q. | D, For conven-
ience, if Q is a constant matrix, we denote || Q || =

| @l - The average of @ is denoted by Q =
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T

— — .1
(qij) I<ij<n® where q; = ;Lna}ﬁ )

ence of its limit, see Ref. [8].

q; (1)dz. For the exist-
T

2 Main Results

Theorem 1 Consider the equation

xeR"

(1)

Suppose that A = diag(A1,, A1, , ..., A1, ), where I, is
the identity matrix of r order, r, +r, + ... +r,=n, A, #
0, and A, # A;, i # j. Assume that Q (f, ¢) =
(q,(8)) i <. 8(t, &), and h(x,t, &) are analytic quasi-
periodic on D/, with frequencies w,, w,, ..., w,, and ana-
lytic with respect to . Moreover, h(x, t) is analytic with
respect to x on B,(0), h(0,7, &) =0, and D h(0,1, &) =
0. Here B,(0) is a ball (in the complex plane) centered
in 0 with radius a; ¢ € (0, g,) is a parameter.
We give the following assumptions.

X=(A+eQ(t,e))x +eg(t,e) +h(x,t,¢)

Assumption 1 ( non-resonance conditions) A = {A,,
Ay oA, and w = {w), 0,, ..., 0,} satisfy
| (k@) /=T +2, B‘Z", (2)
e
(k) /=141, -, | =" (3)

| k

for all ke Z'\{0}, where o, is a small constant and 7 > r
-1.

Assumption 2 ( non-degeneracy conditions)  Denote
by x the unique solution of X = Ax + £g(#). Let Q =Q(1)

+Lth(x(t), ) and Q = ( G )<<, Denote Q =
- x <

(R;) . ;<> Where R, is the r, order matrix for 1 <k<l.

Define R, = R, and R = diag(R,, R,, ..., R,). Assume
that the eigenvalues of A + eR are A}, A}, ..., A’, and the
eigenvalues of R, are 8,5, ..., 8, which satisfy | &/(&)
' j ' ds;( &)
-8(e) | =6>0, 8(0)#65.(0), q <8,, 8=
£
d(A, d( e8]
‘ (A (&) _ ‘ (&8:(e)) ‘ =5 >0, and 5, =
de de
‘ d(X, (&) - A\ (&) d(8)(&) - &) (&))
- = =0, >
de de

0, where j#j oriz i'; i,i'=1,2,...,1; k, k,k,=1,2,
won, ki #ky,; e€(0,¢e,); 8,6,.6, and §, are constants.

Assumption3 || D, h(x,t, &) || <K, where x €
B,(0) and £ € (0, g,). Then there exists a non-empty
Cantor subset E* C (0, g,) with a positive Lebesgue
measure, such that for ¢ € E”, there exists a quasi-peri-
odic transformation x = s(#)y + ¢(t) which changes Eq.
(1) toy=By+h_(y,t), where s(t) and ¢(t) are quasi-
periodic with frequencies w; B is a constant matrix and
h_(y,1) =0(y) (y—0). Moreover, meas ((0, &)\

E") =o(g,) when g,—0.

Remark 1 In general, Q, g and h depend on &.
Here and below, for simplicity, we do not indicate this
dependence explicitly. The subset E* C (0, g,) is a Can-
tor-like set and so the smoothness of the function with re-
spect to ¢ on E° should be understood in the sense of
Whitney. We refer to Ref. [9].

3 Preliminary Step

In this section, we will give the first KAM step. For
Eq. (1), the purpose of the first step is that A is changed
from the case of multiple eigenvalues to the case of differ-
ent eigenvalues.

)

If‘<k,w>v_l+)\i ‘k 3

denote by x the solution of ¥ =Ax + gg(¢) on D

=

for ke Z'\{0}, we

Un-
der the change of variables x =x +y, Eq. (1) is changed

p=s®
into
y=(A+sQ)y+&g+h(y, 1 (4)

where Q(1) = Q(1) +%th(x, 1), 8(1) :l—zh(x, 1 +
d Pehidt.d

(0% iy, 0 =h(x+y.0) ~h(x, 1) - Dh(x, D).

We define the average of Q by é =( EU ) \<i j<a- Denote
é =(R;) ., <> Where R, is the r, order matrix for 1<k
</. Define R, =R, and R =diag(R, R, ...,R,). Let ei-
genvalues of R, be 8,5, ...,5].

There exists a nonsingular matrix S, such that

S(A+sR)S=A" =diag(X’, A}, ..., X))

where the eigenvalues of A are {A, + .965} forj=1,2,
....,r;and i=1,2, ..., 1. Denote A + &R = diag(A:, A;,
...,A,), where A, is the r, order matrix for 1 <k<I.

Now we can make the change of variables y = Sz to
Eq. (4) and obtain

7=(A" +eQ)z+£°8(0) +h(z, 1) (5)
where S '(Q-R)S=0,5 'g=g.8 "h(Sz, 1) =h(z,1).

We denote

Q = (51,,-) 1<i,j<n

Q :(’étj)lsi,iﬂn
Making the change of variables z = (I + &P(t))z, into
Eq. (5), we obtain
Z,=((I+&P) "(A" +e(A'P-P+Q)) +
g (I+&P) 'OP)z, + &' (I +&P) 'g(1) +
(I+&P) '"h((I+&P)z,,1) (6)

We would like to have(I + ¢P) "' (A" +s(A"P - P +
0)) =A", which is equivalent to

P=A"P-PA" +Q (7)
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Expand Q and P into the Fourier series Q = 2 0.,

keZ

ik, w)t = _k
ZPke ", where Q, = (@) 1<ijen Pi =

keZ'
(pj:(j)]si,jsn‘ If ‘<k» w> v =1 +)\t' _)\;

eZ'\{0}, and | X, -\’ | =8 when A",
ues of A; and X', are the eigenvalues of A, with i, #1i,,

— = fork

are the eigenval-

then by comparing the coefficients of Eq. (7), we obtain

that pg =0, if i, j are the subscripts of the elements of

corresponding blocks R, in R = (r,),_; ;c, With | <i<[;
or else,
~k
w1 K-
Since Q is analytic on D, ., we have o, <0 o,
e M"Y Hence, we can solve Eq. (7) for P in a smaller
domain D__, and
p-2s
P < P !k (=29 < C
1P, <3 P 5

By Assumption 2, we obtain that the eigenvalues of

R(e) \ , are different. Since R(e) =R(0) + O(&) and
the elgenvalues of R(0) are different, it follows that
IS |, || S| <c'. Then we have

[P, < (8)

where ¢, ¢,
0<s<p/4.
Using Eq. (6), we obtain

and ¢" are positive constants; v =37 + r and

7, =(A" +£°Q, )z, +eg. () +h (z,,1) z, € B, (0)

a=|[xlp.

where a, = s
CEUSTdre [P )2

g.=(I+gP) 'g(t),h, =(I+&P) 'h((I1+&P)z,,1).

. =(I+&P) 'QP,

If | &P | $%, we have || (I+&P) " || », S2. By Eq.

(8), we have

CO A 2 <
1Q. 1o, S, =
O( S

1

KL g ]l ,)
(9)
This completes the first step.
4 Proof of Theorem 1
4.1 KAM-step

After the first step, A" has n different eigenvalues and
2
£Q,

The next step is standard. Let us consider the equa-

and g’g , are smaller perturbations.

tion:

X, =(A, +&0Q)x, +& g,(t) +h,(x,.1) m=1

(10)
where x,, € B, (0), and A" are eigenvalues of A, with
A =A" | =6e, Vi)

If | (ko) —T+A" | = ‘:

der the change of variables x, =x, +y, where x,, satisfies

“5- forke Z'\{0}, un-

_,.» Eq.(10) is changed into

-
=A,x, +& g,on me

y=(A, +& 0)y+& &, + ﬁn,<y, n (1)
where 0, = 0, +lihm<xm, N, & = X, 1) +
6‘
7mem, h,(y,t) =h,(x, +y,t) - h, (x,. 1) -
R Xn

D._h (x t)y. Let us define the average of Qm by ém =

x"m

( qg?)lg,.ng,,. Denote é = (R'”)1<, <> Where Ry is the
r, order matrix with 1 <k</. Let us define R =R and
R, =diag(R}.R;,....R]).

Eq. (11) is changed into

Y=(A, +e"Q)y+e g, thy(y.0  (12)
Where Am+l = Am + 82”’Rlﬂ’ Ql}‘l - R = Qm’ fl/ﬂ (y’ t) =
h,(y,t). Denote A,, =diag(Al"", AV, ..., A'""),
where A} "' is the r, order matrix for 1 <k<I.
We make the change of variables y = (I +&" P,)x,,,,
into Eq. (12) to obtain
m+l _(Am+l "v‘Qm+l)xnz+l +‘92”H]gm+l(t) +

m+l(xm+1’ t)

where 0, =(I+&"P,) "'Q,P,.8,, =TI+ P,) "'g,,
h,, =(I+&P,) 'h,((I+&P,)x,..1). Let the ei-
genvalues of A, be A7, AT, .., A”*". The same as
the first step, we now need solve the equations P, =A,
P - PmAm+l + Qm’ Where Qm =Qm - Rm' If ‘ <k’ w>
[T A oA | = “"ﬁ; for all ke Z'\ {0}, and
[ A2 = A2 | =6 when A" are the eigenvalues of
A7""and A7"" are the eigenvalues of A} with i, #i,,

x,,€B, (0)

then we can solve the above equations for P, in a smaller

domain me_z% and
1P, 1y 10,1, (13)
am+1 m
If |&°P, | s%, we have || (I+& P,) ' | <2. By
(13), we have
|| Qm+] || D, = m || D, ==

m+1%m

2
w o, + KoLy 1180l )

m+1%m

(14)
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4.2 Iteration

Now we prove the convergence of the iteration as m—
o . In the m-th step, we choose

Q,
7y P =P =208y +8, +...+5,,_,)

o, ="
" o (m+1)
ay= 1%, 11

P p - Tli P
. D,=D,. a,, =%
m P m +& H P, ” D,

m 4m +1?
Then for all m e N, there exists b >0, such that

1&g o, < I UT+&"P) " II]18, ] <
K, L., :
b= 18 1o, + 0L 1 2ol o, 180 Il o,

where b is a constant. By (14), we obtain

¢
|| Qm+] || lesa V( || Qm H D, +Kle,m || gm H Dm)2

m+1%m

For simplicity, let us define v, = | @, || ,, and B, =

|| gm || D, Define nm = max {Bm’ YV }' Hence’ nm+1 =
C] 9 2m ) ) o
— X2 x (*) L" xn,. We have n, <M, where M
am+lsm 2 "

is a positive constant. Hence, | @, |, < M and

I g, || h<M". If0 <Me <1, we have

lime* Q, =0,

m—o

limg g, =0 (15)

Next we consider || P, || . By (13), we have

c .
1P, 1. < Qo + KL N8, Il ) <M
m+1%m
If e <e, =M"~', we have

limg” P, =0

m—o

(16)

Besides, | x, ||, <& L g, |, <&M . Ife<e,

-1
=M"", we have

(17)

lim || x,

m—o

b, =0

am - ” xm ” D,
We have a,,,, =———————— and we define
L+e” [P, |5,

1 || xm || D,

b, = ) Tam
lae Pl

c, = ™
lae P,

It is easy to prove that H b, and z ¢, are convergent.

m=0 m=0
So we have a_ = ba, — ¢, which is positive when & is
small enough.
By || D,h, | <K,, we obtain

(1+s | P, ],.)

K 2" m
L= P,

m+1 ==

So

Kn+1 $(1 +2‘92m H Pm || D,,,,,)3K1n

n

. 91" . .
Since K, < (7) K, we obtain that K, is convergent as

m—oo . Let

limK, =K

m—o

(18)

Hence, h, (x
Moreover,

t) converges as m—oo .

m?>

1A, ~A, | <& R, I <& C(I1Q, Il +K,L_11&, Il )

We can find a suitable constant M > 0, such that
” Qm ” p, t KmL‘,,, ” 8, ” D, SMZW' If £ < & = M_l’ we
obtain that A, is convergent as m—o . Let

limA, =A"

m—oe

(19)

limA, = A", limg& P, =0,

m-—>o m-—>o

In conclusion,

By Egs.
(16) and (17), we know the existence of the change x =
W(1)y +¢(t). Under this change, the equation ¥=(A" +
Q. )x+sg. (1) +h (x,1) becomes y=A"y +h_(y,1).

=0. Let us define D, = rmwo D, .

m=

lim [l x,, [ 5
e heli]

4.3 Estimate of measure

Now we prove when g, is small enough, the non-reso-

am

|k

nance conditions | (k, @) v -1 + A | = and

37

(kw) /T AT A7 =
(0,g,),where i,j=1,2, ..., n; m=0,1,2, ...; and k
eZ'\{0}. Let I(f(e)) be the Lipschitz constant from
below of f{¢) and L(f(e)) be the Lipschitz constant from
above of f( ). Without loss of generality, assume that
A7 = A are pure imaginary numbers. Then we consider

=

-- hold for most ¢ e

o

k

=

- (20)

37

| (k,ew) /=1 +A7 =0

where A" — A} satisfies (A (&) —A['(&)) =86>0 for i
Jj.

By the condition ( Assumption 1) of the theorem, (20)
holds for m =0.

If i=j, by (3), we obtain that (20) holds.

Let f(e) = (k,e@) v =1 + A = A/ for i#j and

a,
‘ k 37

where g, is small enough such that Eq. (10) is convergent
for £ €(0, g,), and

0%={aeﬂh%)ﬂs)<

(A () —A)(&) =8 (21)
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Since |fle) [ = [(k,w) v/ -1 +A) =) | —2Ms=

(&) 1 4M30

- 2Meg,, we have that if ——— , then
T ‘ k T a,
anl .
fle) | =—"— \k oo and 0””, 5. However, if
1 4Meg,
- < , by (21), we have meas (Oum) <
‘ k ‘ Q
2a,,
——5;- Then,
S|kl
2n'a 1
k m
meas (Y 4, Om) < 75 X TR S
W<4M§‘0/D(”
cela, ¥ — i
0 e T (m + 1)2

where c is a constant depending on «.

LetEm:{ee(O,go) | (kow) /=T +A7=A7 | =

., 0%keZ’, l;éj}. Then (0,¢,) -E,= U U

‘ k i#j 0£kel

0" . Th ((0,8,) —E )< € g
- us meas , - <=——. Le =
ijm 80 m (m + 1)2

ﬂ E, . Hence, meas ((0,g,) —E") scaé. Then it fol-

m=0

meas ((0,g,) —E")

lows that lim =0. So if g, is suffi-
&0 &y

ciently small, E” is a nonempty subset of (0, &,).

Similar to the above discussion, when g, is small

holds for most £ € (0, g,) .
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