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Abstract: A machine learning based speech enhancement
method is proposed to improve the intelligibility of whispered
speech. A binary mask estimated by a two-class support vector
machine (SVM) classifier is used to synthesize the enhanced
whisper. A novel noise robust feature called Gammatone
feature cosine coefficients ( GFCCs) extracted by an auditory
periphery model is derived and used for the binary mask
estimation. The intelligibility performance of the proposed
method is evaluated and compared with the traditional speech
enhancement methods. Objective and subjective evaluation
results indicate that the proposed method can -effectively
improve the intelligibility of whispered speech which is
contaminated by noise. Compared with the power subtract
algorithm and the log-MMSE algorithm, both of which do not
improve the intelligibility in lower signal-to-noise ratio (SNR)
environments, the proposed method has good performance in
improving the intelligibility of noisy whisper. Additionally,
the intelligibility of the enhanced whispered speech using the
proposed method also outperforms that of the corresponding
unprocessed noisy whispered speech.
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R ecently, processing of whispered speech has re-
ceived much attention. As a special paralinguistic
phenomenon in human communications, the whisper has
two major characteristics in contrast to phonated speech.
The first difference is the lack of pitch and turbulence like
noise excitation patterns since whispered speech is pro-
duced with no vibration of the vocal cords. The second
difference is the coupling of the trachea with the vocal
tract due to the opening of the vocal folds'" .
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In comparison with voiced speech, whispered speech
enhancement is clearly more difficult due to its acoustical-
ly turbulent noise and has much weaker energy than the
phonated speech. As a result, whispered speech is more
susceptible to interference'”. Generally speaking, impro-
ving the intelligibility of the noisy whisper rather than the
quality (e. g., SNR improvements or comfort of the en-
hanced speech) is much more important since semantic
information retrieval becomes the dominating purpose in
whisper communication.

However, the existing enhancement algorithms, such
as the power subtraction method"”' and the log-MMSE al-
gorithm'” | successfully improve speech quality, but fail
to improve the intelligibility of noisy corpus because the
objective function used in these algorithms aims to im-
prove speech quality rather than speech intelligibility. The
two distortions, e. g., speech distortion and noise distor-
ting, produced in these algorithms are treated equivalent-
ly. However, these two distortions have different effects
on improving speech intelligibility"".

A human can successfully get the semantic information
from the whisper in diverse noisy contexts. This remarka-
ble ability is attributed to the human auditory perceptual
system. A great achievement of the perceptual system is
its auditory scene analysis (ASA) capability'” . The ASA
consists of two basic perceptual stages: segmentation and
grouping. The segmentation stage decomposes an audito-
ry scene into a collection of sensory elements in the joint
Each of the sensory elements
should primarily originate from a single sound source.

time-frequency domain.

The grouping stage aggregates the sensory elements that
arise from the same source. Segmentation and grouping
or ASA cues,
including har-

are governed by perceptual principles,
which reflect intrinsic sound properties,
monic, onset and offset, location, and prior knowledge
of specific sounds'”.

In computational auditory scene analysis (CASA), ide-
al binary time-frequency masking (IBM) is a signal sepa-
ration technique that retains mixture energy in time-fre-
quency units where the local signal-to-noise ratio exceeds
a certain threshold and rejects mixture energy in other
time-frequency units. Wang et al. " and Li et al. "’ have
also shown that multiplying the ideal binary mask with the
noise-masked signal can yield large improvements in intelli-
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gibility, even at extremely low SNRs of —-10 to -5 dB.

In this paper, we explore this idea to improve the intel-
ligibility of whispered speech in a noisy background. A
novel feature called Gammatone feature cosine coeffi-
cients (GFCCs) based on an auditory periphery model is
proposed and used to train an SVM classifier. The domi-
nant whisper time frequency ( T-F) unit is then recognized
by a trained SVM classifier. The enhanced whisper is
synthesized by multiplying the noisy whispered speech
signal with the estimated binary mask.

1 Proposed Enhancement System

Fig. 1 shows the schematic diagram of the proposed
system for enhancement of whispered speech. As shown
in Fig. 1, the noise corrupted whisper is first preprocessed
by cochlear filtering using a bank of 128 Gammatone fil-
ters to simulate the cochlea. In the feature extraction
stage, the noise robust features called GFCCs are extracted
for each time frame. In the training stage, noisy whispers
are obtained by adding noise to the whisper manually with
pre-prescribed SNRs. The local SNR of each T-F unit is
first calculated and compared with the threshold (set to O
in this paper) to obtain the prior binary mask, namely,
the ideal binary mask (IBM). Then the extracted feature
vector and the binary mask of each T-F unit are used to
train an SVM classifier. In the enhancement stage, the
features of the noisy whisper are extracted and given as
input to the classifier. A binary mask estimated by the
trained SVM is used to synthesize the whisper. In order to
evaluate the performance of the proposed approach, listening
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tests are conducted to evaluate the intelligibility perform-
ance of whisper synthesized using the proposed system.

2 Noise Robust Auditory Feature Extraction

A joint T-F representation of an input signal (with a 16
kHz sampling rate) is derived using a bank of Gamma-
tone filters, which are derived from psychophysical obser-
vations of the auditory periphery. This filterbank is a
standard model to simulate cochlear filtering. In this pa-
per, the noisy whisper signal is first bandpass filtered into
a bank of 128 Gammatone filters with center frequencies
ranging from 80 to 8 000 Hz according to a mel-frequency
spacing. This frequency range is adequate for speech un-
derstanding. The impulse response of a Gammatone filter
centered at frequency f is

bt e 7™ cos(2mft) t=0
0 otherwise

s ={ (1)
where a =4 is the order of the filter and b is the equiva-
lent rectangular bandwidth, which increases with the cen-
ter frequency f. Let x(¢) be the input signal. The re-
sponse from a filter channel ¢ is given by

x(c, 1) =x(1) *g(f., ) (2)
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where “ % ” denotes convolution operation and f, is the
center frequency of filter channel ¢. The output signal
from each channel is down sampled using low-pass filte-
ring and decimation by a factor of 4, and then segmented
into overlapping segments of 128 samples (32 ms) with
an overlap of 64 samples, respectively. Each segment is
Hanning-windowed and denoted by A, which is referred
to as a Gammatone feature ( GF). Note that the dimen-
sion of a GF vector is much greater than that of feature
vectors used in a typical speech recognition system. The
Gammatone features are largely correlated with each oth-
er. In order to reduce the dimensionality and de-correlate
the components, a discrete cosine transform (DCT) is ap-
plied to a GF as follows:

N-1

C (i) = %;A,’L,(p) cos(iwzgi;\—[l) (3)
where i =0, 1, ..., N-1 and N is the segment length. The
resulting coefficients are called GFCCs of frame ¢ at chan-
nel c. When performing inverse DCT of GFCCs, we find
that almost all the GF information is captured by inclu-
ding up to 30 coefficients. Hence, we use the 30-dimen-
sional GFCCs as a feature vector for each time frame in
this paper. The static GFCCs feature of frame ¢ at channel
cis

Vz,c = {C/,c(o)’ Cz,c(])r e Cx,g(N _])} (4)

In order to incorporate temporal information, delta co-
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efficients are also calculated as

B
Z b( VH-b, c Vt—b, c)
DV“ — b=1 - (5)

b=1

where b is a neighboring window index and B denotes the
half window length and it is typically set to 2.

Fig.2 shows a schematic diagram of enhanced whisper
synthesized from different channels along with the esti-
the con-
taminated whispered speech is first filtered into 128

mated binary mask. In the enhancement stage,
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of each filter is time-reversed, passed through the filter,
and reversed again. The filtered waveforms are windowed
with a raised cosine window every 32 ms with an overlap
of 16 ms between segments, and then weighted by the es-
timated binary mask. The binary masks are estimated by

To remove across-channel differences, the output

the two-class SVM classifier that has been trained in the
training stage. Each T-F unit of noisy whispered speech is
subsequently retained or eliminated by the estimated bina-
ry mask. The estimated target signal is then reconstructed
by summing the weighted responses of the 128 filters.
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Fig.2 Block diagram of the whisper enhancement stage of the proposed system

3 Experimental Results

In order to evaluate the proposed algorithm, whispered
speech stimuli were collected. 50 phonetically balanced
sentences were used to produce a whispered corpora.
Each sentence was uttered by 2 male and 2 female speak-
ers in a quiet room respectively. The format of the re-
cordings is with a sampling rate of 16 kHz, 2 bytes/sam-
ple, and linear PCM. Each sentence was then artificially
corrupted by noise at SNRs of -3, 0, 3 and 6 dB, re-
spectively. Three types of noise recordings including
Gaussian white noise, babble noise and car noise taken
from NOISEX-92 database were used as noise mask-
ers''” . A noise segment of the same length as the speech
signal was randomly cut out of the noise recordings and
appropriately scaled to reach the desired SNR level.
Therefore, a total of 2 400 ( =4 speakers x 50 sentences
x 3 types of noise x 4 levels of SNR) noisy whispers
were produced.

In the training stage, all the noise conditions ( noise
types: Gaussian, babble and car; SNRs: -3, 0, 3 and
6 dB) were used for training the SVM. Each T-F unit of
a whispered speech from training set is first labeled as
whisper dominated ( denoted as 1) or noise dominated
(denoted as 0). The feature vector of each T-F unit com-
bined with the class label is used as the input of the

classifier. The RBF (radial basis function) kernel is
selected as the kernel function of the SVM. Unlike the
the RBF kernel can handle the case when
the relationship between class labels and attributes is non-
linear. The holdout cross validation method was repeated
10 times. The 9 of the 10 subsets were put together to
form a training set and the remaining subset was used as
the test set to estimate the binary mask each time.

Both the objective and the subjective evaluation per-
formances of the proposed algorithm on speech intelligi-

linear kernel,

bility were conducted. The power subtraction and the log-
MMSE algorithms were also evaluated and compared with
the present algorithm. Five processing conditions, i.e.,
the noise-corrupted unprocessed whisper ( denoted as
UN), whisper enhanced using the ideal binary mask (de-
noted as IBM), whisper enhanced by power subtraction
(denoted as PS), whisper enhanced by log-MMSE ( de-
noted as log-MMSE) and whisper enhanced using the
proposed algorithm (denoted as EBM), were considered.

A short-time objective intelligibility measure ( STOI)
proposed recently in Ref. [11] was used to compare the
performance of the aforementioned algorithms in the as-
pect of intelligibility improvement. Fig. 3 illustrates the
STOI values of the enhanced whispers by different algo-
rithms in the context of babble noise and car noise with
SNRs of -3, 0, 3 and 6 dB, respectively. It can be seen
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from Fig. 3 that the proposed algorithm outperforms the
other two algorithms even at very low SNR conditions.
Results in Fig. 3 have also verified the conclusion pro-
posed in Ref. [12] that the conventional algorithms do
not necessarily improve the intelligibility of the enhanced
speech in the low-SNR conditions.
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Fig.3 Average STOIs of the unprocessed noisy whispers.
(a) Babble noise environment; (b) Car noise environment

In the identification listening test, stimuli of UN, IBM
and EBM were played to the listeners monaurally at a
comfortable listening level. Listeners were asked to write
down the words they heard. Intelligibility performance
was assessed by counting the number of words identified
correctly.

Fig. 4 shows the word identification rates of UN, IBM
and EBM as the function of SNRs of -3, 0, 3 and 6 dB
in different noise environments. We can see from Fig. 4
that the proposed system gains substantially higher intelli-
gibility than the unprocessed stimuli in different noise en-
vironments with different SNRs. Its performance almost
achieves the upper bound denoted by IBM.

Tab. 1 charts the mean Chinese word recognition rates
of the whispers synthesized by the proposed method with
different noises participating in the training stage. It can
be seen from Tab. 1 that both the average word identifica-
tion rates of the whispers enhanced by the power subtrac-
tion algorithm and the log-MMSE algorithm are lower
than those of the proposed algorithm in different environ-
ments. This is due to the fact that the power subtraction
algorithm as well as the log-MMSE algorithm does not
treat the two types of distortions ( speech distortion and
noise estimation distortion) differently.
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Fig.4 Word identification rates of UN, IBM and EBM with
SNRs of -3, 0, 3 and 6 dB in different noise environments.

(a) Gaussian noise environment; (b) Car noise environment; (c) Bab-
ble noise environment

Tab.1 Word identification rates of the proposed algorithm,
power subtraction and log-MMSE
Noise SNR/dB EBM PS Log-MMSE
-3 0.47 0.30 0.38
0 0.59 0.45 0.51
GWN
3 0.73 0.60 0.62
6 0.88 0.76 0.74
-3 0.56 0.27 0.35
0 0.64 0.42 0.50
F16
3 0.72 0.57 0.61
6 0.85 0.74 0.73
-3 0.4 0.20 0.30
0.56 0.33 0.42
Babble
0.67 0.51 0.54
6 0.78 0.62 0.63
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4 Conclusion

A new algorithm based on the binary mask for whis-
pered speech enhancement is proposed to improve whis-
pered speech intelligibility in adverse noisy environments.
The pursued approach focuses on the reliable classification
of the T-F unit of the noisy whisper using a supervised
machine learning methodology. Each T-F unit is retained
or discarded according to the binary mask estimated by
the trained SVM classifier, where a noise robust feature is
used. The proposed algorithm is evaluated using objective
and subjective evaluation, i.e., the STOI value and the
listening test with normal-hearing listeners, respectively.
Experimental results indicate that the intelligibility of
whispered speech processed by the proposed algorithm is
substantially higher than that of the unprocessed whis-
pered speech, as well as that of the enhanced whisper
using the power subtraction algorithm and the log-MMSE
algorithm. Intelligibility is improved by suppressing the
background noise without distorting the underlying target
speech signal. We attribute this to the accurate classifica-
tion of the T-F units into the target- and masker-domina-
ted T-F units, and the subsequently reliable estimation of
the binary mask.
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