Journal of Southeast University (English Edition)

Vol. 28, No. 3, pp. 287 —291

Sept. 2012 ISSN 1003—7985

Discrete-time Markov-based dynamic control approach
for compressed sampling

An Chunyan Ji Hong Li Yi

Zhang Xiaoliang

(Key Laboratory of Universal Wireless Communication of Ministry of Education, Beijing University of Posts and

Telecommunications, Beijing 100876, China)

Abstract: To solve the problem that the signal sparsity level is
time-varying and not known as a priori in most cases, a signal
sparsity
determination scheme is proposed. The discrete-time Markov
chain is used to model the signal sparsity level and analyze the
transition between different states. According to the current

level prediction and optimal sampling rate

state, the signal sparsity level state in the next sampling period
and its probability are predicted. Furthermore, based on the
prediction results, a dynamic control approach is proposed to
find out the optimal sampling rate with the aim of maximizing
the expected reward which considers both the energy
consumption and the recovery accuracy. The proposed
approach can balance the tradeoff between the energy
consumption and the recovery accuracy. Simulation results
show that the proposed dynamic control approach can
significantly improve the sampling performance compared with
the existing approach.

Key words: compressed sampling;
prediction; discrete-time Markov chain
doi: 10.3969/j. issn. 1003 —7985.2012. 03. 006

signal sparsity level

‘ x T ith the rapid development of science and technolo-

gy, the amount of data that needs to be sampled
and processed increases swiftly. This sets higher require-
ments for data sampling and processing. On the other
hand, most samples are thrown away in the process of da-
ta compression almost without any loss due to the redun-
dancy in the obtained information. As a result, sampling
efficiency can be improved by ignoring the samples that
will be thrown away. Motivated by this, Donoho'" pro-
posed compressed sensing. By taking advantage of data
(signal) sparsity in one specific domain, compressed
sensing can greatly reduce the sampling rate and recover
the original data (signal) with high accuracy.

Compared with the Nyquist sampling theory, com-
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pressed sensing allows a lower sampling rate and it has
become an emerging subject in signal processing recently.
Much work has been done on it recently. In Ref. [2],
Tropp et al. designed a new type of data acquisition sys-
tem to perform compressed sampling, called a random
demodulator. In Ref. [3], special sampling and recon-
struction techniques were proposed for the SCS-FRI sce-
nario, where the classical finite rate of innovation ( FRI)
sampling scheme was extended to the sparse common-
support scenario (SCS). In Ref. [4], Tropp et al. dem-
onstrated theoretically and empirically that the reliable re-
covery of a signal in dimension d with m nonzero entries
can be achieved by an orthogonal matching pursuit
(OMP) algorithm using O(mlInd) random linear measure-
ments. Candes et al. "'
to exactly reconstruct an object (a signal) from highly in-
complete frequency information. In Ref. [6], the deter-
ministic construction of binary, bipolar, and ternary com-
pressed sensing matrices was studied. Besides,
pressed sensing was applied to a range of applications
such as the estimation of sparse multipath channels in

: [7-8]
many wireless systems

presented a methodology for how

com-

, the random access in energy-
efficient underwater sensor networks'', and so on.

Most of these works focus on either the design of the
sampling system or the reconstruction methods based on
the assumption that the signal sparsity level is known as a
priori. However, in most cases the signal sparsity level is
not known before sampling, and it is a variable due to the
time-varying property of transmitters. At the same time,
both Ref. [1] and Ref. [2] have shown that the number
of samples (or the sampling rate) needed by compressed
sensing increases with the signal sparsity level and loga-
rithmically with the signal bandwidths. As a result, the
prediction of the signal sparsity level for compressed sam-
pling is an essential problem. But to the best of our
knowledge, this problem has not been addressed yet. Al-
though the work in Ref. [ 10] does not need to know the
sparsity level of unknown signals,
should be estimated after acquiring each single sample to
determine whether enough samples have been obtained or
not. This means that the number of samples is exactly
equal to the times that signal recovery and the estimating
algorithm has been run.

the recovery error

Therefore, the computational

complexity is relatively high.
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In this paper, based on the modelling and analysis of
the signal sparsity level with the discrete-time Markov
chain, we propose a dynamic control approach for com-
pressed sampling. The proposed approach can effectively
find out the optimal sampling rate with the aim of maxi-
mizing the expected reward. The contributions of our
work are as follows:

e The discrete-time Markov chain is used to model
and analyze the states of the signal sparsity level, which
is more suitable for periodical prediction. Given the cur-
rent state, the signal sparsity level and its probability in
the next sampling period can be predicted by analyzing
transition probabilities.

e According to the prediction results of the signal
sparsity level, the expected reward which considers both
the recovery accuracy and the energy consumption is
maximized by choosing the optimal sampling rate.

e The computational complexity of the proposed ap-
proach in this paper is much lower than that in Ref. [10]
since the signal recovery and estimation algorithm is run
only one time in a sampling period.

1 System Model

In this paper, we consider a scenario where the receiver
needs to receive band-limited signals which are sparse or
locally sparse in a specific domain. This scenario of sig-
nal processing is very common in practical systems. Here
are some examples. First, for the acoustic sensors, the
received musical signal usually lies in a range of 300 to
34 000 Hz but only contains a dominant sinusoid and sev-
eral harmonic overtones. In other words,
signal of the acoustic sensors is band-limited and sparse in
the frequency domain. Secondly, for the sensing-based
cognitive radio networks, the received signal of detection
devices can be seen as the one whose carrier frequency is
unknown but can lie anywhere in a wide bandwidth.

the received

For simplicity, the signal model which is sparse in the
frequency domain is considered as

K

f) =Y asin2af,r+6,) +n(1) (1)
k=0

where K represents the total number of frequencies con-

tained in the signal. For each frequency f,, a, is its am-

plitude and @, is its phase; n(f) means the additive white

Gaussian noise.

Since the highest frequency in the signal is f,, the sam-
pling rate is at least 2f, to recover the signal without error
according to the Nyquist sampling theory. However, for
the scenarios mentioned above, since the signal is sparse,
recent advances in compressed sensing can be used to re-
duce the sampling rate, thus to save energy and decrease
the requirements on hardware. As mentioned above, the
minimum sampling rate of compressed sensing with toler-
able recovery accuracy has a close relationship with the

signal sparsity level. However, the signal sparsity level is
often time-varying and unknown before sampling. For
acoustic sensors, not only the number of sound sources
but also the dominant sinusoid and overtones of one sound
source may change randomly. For spectrum sensing in
cognitive radio networks,
knowledge on the signal sparsity level before spectrum
sensing. Besides, the signal to be detected is time-var-
ying due to the dynamic properties of primary networks.
In conclusion, there should be an effective control ap-
proach for compressed sensing to predict the signal sparsi-
ty level and determine the optimal sampling rate.

detection devices have no

2 Dynamic Control Approach for Compressed
Sampling Based on Discrete-Time Markov Chain

In this section, the proposed dynamic control approach
for compressed sampling will be presented. First, the sig-
nal sparsity level is modeled and analyzed by the discrete-
time Markov chain; then the sparsity state and its proba-
bility in next sampling period are predicted according to
both the current state and state transition probabilities.
Secondly, based on the prediction results, the optimal
sampling rate is evaluated with the aim of maximizing the
expected reward which is defined as the function of both
recovery accuracy and energy consumption.

2.1 Analysis

The state space of the signal sparsity level can be ex-
pressed as S = {S \ S=0/K, 1/K, ..., K/K}, which to-
tally contains K + 1 states. State k/K, k=0,1, ..., K re-
presents that k bands of the total K spectrum bands are oc-
cupied. In a sampling period with length 7, the number
of frequencies that are newly released or occupied is ran-
dom. This means that one state can transit to any other
state with different probabilities, as shown in Fig. 1. In
the rest of this subsection, we will analyze the transition
probabilities between any two states.

For state S =i, 0/K <i < K/K, the transition probabili-
ties can be divided into four types.

Type 1 To state j < i, the number of the released
frequencies is (i —j) K greater than that of the occupied
frequencies in this sampling period. The corresponding

For state 0/K ‘

For state k/K,0 <k <K

For staie K/K

Fig.1 States transition diagram
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transition probability can be described as occupied can be expressed as
o . . _@an'et
P(S=j, j<i|S-1=i)= Y P(m-(i-j)K)P(m) P°(")‘T n=0, 1,2, ..., +o (7)

m=(i-j)K

(2)

where P (m - (i —j)K) means the probability that m — (i
—-Jj) K frequencies are newly occupied, while P (m)
represents the probability that m frequencies are newly
released.

Type 2 To state j =i, the number of newly occupied
frequencies equals that of the newly released frequencies.
The corresponding transition probability can be described
as

P(S=i|S-1=i) = Z P, (m) P (m)

m=0

(3)

Type 3 To state j >i, j#K/K, more frequencies are
occupied than those are released. The corresponding tran-
sition probability can be described as

P(S=j, j>i, j#K/K|S-1=i) =

i« (4)
Y, P(m+(j=D)K)P(m)
m=0

Type 4 To state j = K/K, all the frequencies are oc-
cupied. The corresponding transition probability can be
described as

Y

K
P(S=K/K|S-1=i)= Y P(m) Y, P,(m+n)
m=0 n=K-iK+m
(5)

Blocking may happen in this situation since the fre-
quency resources are not enough.

States S =0/K and S = K/K are the two special cases of
state S =i, 0/K <i<K/K. This is because state S =0/K
can only transit to state S =j, j=i while state S = K/K
can only transit to state S =j, j<<i. So state § =0/K does
not have Type 1 transition probability and state S = K/K
does not have Type 3 transition probability.

From Egs. (2) to (5), we can see that the transition
probability P(S =j | S =1 = i) has a close relationship
with the probabilities P (m) and P, (m). As a result, we
should analyze P (m) and P, (m) before calculating P(S
=j | S-1=1i). Without loss of generality, only one kind
of service is considered for analytical and computational
simplicity in this paper. The analysis can be extended to
multiple service scenarios easily.

Assume that both the arrival and departure of service
are the Poisson process with parameters A and u. The
probability that m frequencies are newly released can be
expressed as

P (my = W e ™

. m=0, 1, 2, ...

, +o (6)

Similarly, the probability that n frequencies are newly

In fact, for a specific scenario, the statistical properties
will not change in a long period of time; so do the transi-
tion probabilities between any two states. As a result, we
can save the transition probabilities in a database.

2.2 Discrete-time Markov chain-based dynamic
control approach for compressed sampling

There is a tradeoff between recovery accuracy and ener-
gy consumption as the sampling rate R increases. The lar-
ger the sampling rate R, the more the energy is con-
sumed, thus worsening the sampling performance. On the
other hand, when sampling rate R is too small, recovery
accuracy becomes the main factor that may decrease sam-
pling performance. In this paper, we define the expected
reward function E(R) by considering both recovery accu-
racy and energy consumption. Assuming that the current
state is S —1 =i, E(R) can be expressed as

E(R) = Y P(S=k/K|S-1=i)(aA(R, k/K) —Be,RT)
(3)

where A(R, k/K) means the recovery accuracy when the
sampling rate is R and the signal sparsity level equals k/
K; T is the length of the sampling period; RT means the
number of samples in a sampling period; e, represents the
required energy to take a single sample; « and B are both
the constants, representing the weights of recovery accu-
racy and energy consumption, respectively.

Due to the fact that the recovery accuracy A(R, k/K)
cannot be precisely expressed by a formula, we obtain it
by simulation, which is similar to the method in Ref.
[4].

In this paper, our goal is to maximize the expected re-
ward by dynamically adjusting the sampling rate accord-
ing to the prediction results of the signal sparsity level. In
other words, we should solve the following problem:

.
max E(R) =max Y, P(S=k/K|S-1=i) -
R R 3=0

(aA(R, k/K) - Be,RT) (9)

The above problem can be easily solved by discrete op-
timization methods, such as the particle swarm optimiza-
tion, the ant colony algorithm, and so on.

3 Simulation Results and Analysis

Extensive simulation results are presented in this sec-
tion to evaluate the performance of our proposed dynamic
control approach and the existing approach for com-
pressed sampling. The existing approach here denotes the
one in which the sampling rate is determined by consider-
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ing the maximum signal sparsity level. The following as-
sumptions are adopted in the simulation. The number of
frequencies in system K is 8. The highest frequency is 4
kHz. Each time slot lasts 10 ms. As a result, the sam-
pling rate which is at least 8 kHz or 80 samples should be
taken in each time slot according to the Nyquist sampling
theory. In the simulation process, by using compressed
sensing, N(N < 80) samples are taken in each time slot
and nonlinear optimization is used to recover an original
signal. « =1000 and B =10 if there is no special expla-
nation.

We first evaluate the recovery accuracy performance of
compressed sensing since our expected reward function
takes it into consideration. The evaluation process works
as follows. For each signal sparsity k/K, an original 80
x 1 vector x,, is randomly generated. Then as the sam-
pling rate R varies from 1 to 2 f, Hz, the compressed
sampling and recovery process is run for 10* times. The
recovery accuracy A(R, k/K) is defined as the ratio of
the times that x, is successfully recovered to the total

times 10*. Here the vector is successfully recovered when

\ Xog — X | <10 7, where x__ is the recovered vector.

In Fig. 2, the relationship between the recovery accura-
cy and the sampling rate is presented. From this figure,
we can draw the following conclusions. First, similar to
the simulation results in Ref. [2] and Ref. [4], the re-
covery accuracy increases with the sampling rate for all
the sparsity levels. Secondly, the increase rate of recov-
ery accuracy is very slow at first, then becomes rapid,
and finally slows down as the sampling rate varies from
low to high. Thirdly, the higher the signal sparsity level,
the greater the sampling rate, which is in accordance with
the theoretical results obtained in Ref. [4].

1.0
0.9}
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0.7k
g b
£0.6f 18
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0.2}
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0 1 2 3 4 5 6 7 8
Sampling rate/kHz

Fig.2 Recovery accuracy vs. sampling rate for different signal
sparsity levels

Fig. 3 shows the performance of our defined expected
reward function with different values of the sampling
rate. From this figure, we can see that the expected re-
ward first decreases, then increases, but finally decreases
when the sampling rate varies from low to high. This is
because when the sampling rate is very low, the recovery

accuracy increases slowly with the sampling rate, but the
energy consumption increases linearly with the sampling
rate, so the expected reward function decreases. As the
sampling rate increases, the increase rate of recovery ac-
curacy becomes rapid and greater than the increase rate of
energy consumption; and the expected reward function
increases rapidly. Once the recovery accuracy equals 1, it
does not increase. However, energy consumption still in-
creases with the sampling rate. So the expected reward fi-
nally decreases linearly. This is also the reason why the
three curves combine together when the sampling rate is
greater than 5. 2 kHz.
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Fig.3 Expected reward vs. sampling rate for different signal
sparsity levels

Fig. 4 shows the relationship between the optimal sam-
pling rate and the signal sparsity level under two condi-
tions. «:B3 is assumed to be 500: 10 for the first condition
and 1 500: 10 for the second condition. In Fig.4, the re-
covery accuracy and energy consumption have different
impacts on the optimal sampling rate. The optimal sam-
pling rate increases as the weight of recovery accuracy in-
creases and decreases as the weight of energy consump-
tion increases.
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Fig.4 Optimal sampling rate vs. sparsity level for different ra-
tios of a: B

In Fig. 5, the performance of our proposed dynamic
control approach is compared with the existing one. From
this figure, we can draw the conclusion that our proposed
approach can greatly improve sampling performance. For
example, the reward of our proposed approach is about 1.6
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Fig.5 Reward comparison when using different control ap-

proaches for compressed sampling

times as large as that of the existing approach when the
signal sparsity level equals 1/8. Additionally, the smaller
the sparsity level, the better sampling performance of our
proposed approach.

4 Conclusion

In this paper, the sparsity level of the receiving signal
is analyzed and modelled by the discrete-time Markov
a novel dynamic control approach
for compressed sampling is proposed to maximize the ex-
pected reward by considering both the recovery accuracy
and the energy consumption. The key step of our pro-
posed approach is to analyze the transition probabilities

chain. Furthermore,

between any two states of signal sparsity level by the dis-
crete-time Markov chain. Finally, the sampling perform-
ance of our proposed dynamic control approach is evalua-
ted by extensive simulation results.
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