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Abstract: To solve the bottleneck problem in centralized
service discovery methods,
domain ontology for semantic service discovery is proposed.
This distributed architecture can adjust the domain partition
and  allocate automatically.  The

a novel architecture based on

system  resources

characteristics of this mechanism are analyzed, including
scalability, self-organization and adaptability. In this
mechanism, semantic web service discovery is separated into
two parts. First, under balance tree topology, registry proxy
can rapidly forward requests to the objective registry center,
and avoid the bottleneck problem. Secondly, a semantic
distance based service matching algorithm is proposed to
promote the effect of service searching. The results of
simulation experiments show that the proposed mechanism can
serve as a scalable solution for semantic web service
publication and discovery. And the improved matching
algorithm has higher and precision than other
algorithms.
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semantic

ecently, with the development of web service stand-
Rards and technology, a great quantity of web serv-
ices has been provided on the Internet. Due to the explo-
sion of service information, how to rapidly and precisely
find the user required service in such a large online group
has become a major problem in the web service sys-

1
tem'"

. Web service discovery technologies as the solu-
tion to this problem have been studied by researchers for

years.
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In most current service discovery methods, WSDL"™
(web service description language) is used to describe the
interface of web services. However, without semantic de-
scription of service functionality, knowledge reasoning is
disabled in these methods, which lowers the precision of
service discovery. On the other hand, UDDI"™ ( universal
description discovery and integration) as a current service
discovery standard is adopted to support the keyword-
based service matching mechanism. But, this framework
has two limitations'" .

First, centralized service registries based on UDDI may
easily suffer from problems such as the performance bot-
tleneck of vulnerability to failures with the increase in the
number of service consumers and requests. This inherent
disadvantage prevents web services from being applied in
large scalable service networks. To overcome this prob-
lem, the decentralized architectures, such as the P2P net-
work, are designed to enable a scalable web service dis-
covery mechanism. In these frameworks, registry centers
separately store services in different domains by using
service classification information in the common knowl-
edge database. However, one major problem is that these
is predefined and cannot be
changed according to the practical situation.

Secondly, the search mechanism of UDDI is based on
the key words matching, without any formal semantic de-

centers’ classifications

scription of their capabilities. The lack of any machine
interpretable semantics requires human intervention for the
service discovery, and reduces the accuracy of service
matching'”'. Thus, semantic web service discovery has
been proposed based on the semantic web and web service
technological concepts. Burstein et al. '
abstractions necessary for architecture to support the se-

summarized the

mantic web service, and indicated the phases of semantic
web service interaction. The key idea is to present the
functionality of a web service explicitly by using the se-
mantic annotations'”’.

In this paper, a novel distributed service discovery ar-
chitecture is presented, which is organized in a tree form
topology. It promotes the efficiency of service registry
and discovery with higher adaptability than other meth-
ods. Meanwhile, OWL-S"", as a widely applied stand-
ard, is adopted to provide a framework describing both
the functions and the advertisements for web services.
Because of its capability of abundant semantic informa-
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tion, OWL-S is used to describe the web service adver-
tisements and service queries semantically in our method
(UDDI-based service query can easily be transformed to
semantic query messages. ). Registry centers are classi-
fied based on the related OWL-S ontology. Also, our so-
lution relies on registry proxies which are designed to
manage registry centers.

For service matching, an improved semantic matching
algorithm is proposed. We leverage the method to meas-
ure the semantic similarity between the concepts in the
service query and the service advertisement,
more efficient than other methods. In the processing of
ontological concepts matching, we not only consider in-

and it is

heritance (subClassOf) relations, but also the disjoint re-
lationship between concepts. With the weight assignment
for different relationships in the ontology graph, the pro-
posed matching approach outperforms the other two algo-
rithms"™'in precision and recall according to the experi-

ments.

1 Related Work

Since scalability has become a significant property for
discovery[m], the distributed
discovery mechanism is introduced for large scale web
service applications. He et al. "’ proposed a P2P-based
decentralized service discovery approach named Chord4S.
It utilized distributed description data of functionally-
equivalent services and inspected the capabilities of the
popular chord ring to provide service distribution and dis-
covery in a decentralized environment. In our previous
works presented in Ref. [12], the distributed web service
architecture ensures the effectiveness and scalability of
web service systems. However, services with the same
functionality are inaccessible when a single failure occurs
in this architecture, so we design a new failure tolerance

web  service service

method to improve the robustness of TSWS.

On the aspect of web service matching, methods are
classified in two types: one is UDDI-based key words
matching technology, and the other is semantic service
matching technology. The lack of semantic description
information greatly reduces the precision and recall of
service matching. Therefore, researchers have proposed
many mechanisms in semantic service matching, most of
which are based on the similarity of each concept in an
ontology graph. In Ref. [8], based on the hyponymy of
concepts corresponding to the input and output of web
services, semantic matches are divided into exact, plug-
in, subsumes, and fail. Exact matches are preferred to
plug-in matches, which in turn are preferred to subsume
matches. This is a classic and widely cited semantic web
service matching algorithm, but it cannot allow for more
specific matching in the same degree, which makes it not
suitable to the situations of many web services in a net-
work. Therefore, Fu et al." proposed a formula to

measure the semantic distance between services through
concepts specified in the ontology. Four structural attrib-
utes — Path Length, Depth, Local Density and Number
Of Down Direction in ontology graph — are considered to
improve the matching performance. While in Ref. [ 13],
the depth of concept becomes a factor in the weight as-
signment function. When the whole edges are weighted,
the node rooting table is generated through breadth trav-
ersal operation on the ontological concept graph, and the
distance of concepts can be calculated for further semantic
similarity computation.

In most existing researches, relationships except ““sub-
Classof” are rarely considered. In fact, relationships be-
tween concepts may have more types, such as “disjoint”
or “hasSome”. These relationships provide more human
intuition similarity between concepts, which help to en-
hance the precision and recall of algorithms. Therefore,
four relationships ( subClassOf, instanceOf, hasSome,
disjoint) are taken into account as influencing factors dur-
ing weight assignment to improve the performance of se-
mantic web service matching.

2 Architecture

In this section, we design an effective failure tolerant
method for our previously proposed architecture for serv-
ice discovery to protect our system functionality from be-
ing unavailable.

2.1 Tree-form topology

In this paper, the OWL ontology is used as the seman-
tic metadata to identify registry centers. Concepts ( do-
mains) in the domain-specific ontology are organized as a
directed acyclic graph (tree structure at most of the time)
through the relationship “subClassof”. Thus our architec-
ture has a tree-form topology called tree for semantic web
service (TSWS), as shown in Fig. 1. Four participators
are involved, namely ServiceRequester, ServiceProvider,
ServiceDiscoverySystem, and domain-specific ontology.
The part of the domain-specific ontology acts as a com-
mon knowledge supply ontology information for Service-
DiscoverySystem. The whole procedure of service regis-
try and discovery is listed in Fig. 1.

Two types of nodes exist in our main topology.

1) Registry proxy (RP)
architecture, RP nodes have two major functions: main-
taining the structure of the topology and forwarding regis-
tration/discovery messages to the target storage nodes.
Each RP is related with a concept set in which the con-
cepts are generated from the set of its child node. A route
table — neighbor table — of the RP node contains infor-
mation of its father and children. Therefore, the RP node
has the ability of “self-replication”, namely a new RP
node will be created when new information is added to the
neighbor table.

As managers in the proposed
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Fig.1 Topology of the system

2) Registry center (RC) RC nodes are the storage
centers in the architecture. Each RC is related to a con-
cept set and the main tasks of the RC are to store the se-
mantic web service descriptions which are related to their
concept sets, and to provide appropriate service descrip-
tions in their repositories for user requests.

Each RP node in the system forwards the request mes-
sage using the neighbor table (see Tab. 1). Also, the bal-
ance keeping of the tree is based on the table.

The concept set displays the combination of the
children’s node concept sets. The depth and layer column
can be respectively obtained after the following steps ( see

L=2
R=1

L=2
R=2
S=min(L,R) =2

Fig.2, where L represents the layer of the left child, R
represents the layer of the left child, S represents the layer
of self):

1) The layer of the root node is defined as 0, and the
depth of each RP node can be calculated through a top-
down traversing process.

2) All the RP nodes respectively copy their own depth
to their RC children within the neighbor table. Then when
all the layer information of RC nodes is determined, each
RP node informs its father the layer information generated
from the minimal layer number of children through a bot-
tom-up process.

depth =0

— Top-down process
- —= Bottom-up process
3 RP node

O RC node

Fig.2 Layer information achievement

Tab.1 Neighbor table of N, in Fig.2
Node Concept set Address Layer Depth
N, {cg +ce} 10.3.16. 140 1 0
N, {cal} 10.3.16. 141 2 1
N, {c.} 10.3.16. 142 2 2
Ns {en} 10.3.16.143 2 2

Since there is no registered service in the system, when

the first registry request comes, the root will store a new
service in the empty RC node as its child. As the number
of services goes up, the RP node may utilize the adaptive
mechanism proposed in Ref. [12] to dynamically manage
its children (RP or RC). When a new RC node is added
to the system, the layer information of its ancestors
should also be changed through a bottom-up process. In
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this process, first, each RP node sets the layer informa-
tion of the child RC node (if there is one) equal to its
own depth. Then, after all the children’s layer informa-
tion is generated, the parent node chooses the minimal
layer number of its children as its own layer number and
reports to its parent. Thus, all the nodes in this system
can obtain their own layer information.

The topology is kept as a balance tree based on the
adaptive mechanism, since the depth of the tree will not
be changed after the joining process if the RP topology
tree is not a complete tree. Meanwhile, the leaving
process will not lead to imbalance because all the RC
nodes in the topology tree are leaves. The amount of
messages transmitted during the joining process is limited
to 2log,N, where n denotes the maximal number of chil-
dren of a node, and N denotes the total number of RC
nodes in the topology.

The detailed description about topology maintenance is
omitted here due to the space limitation, and can be
found in Ref. [12].

2.2 Failure tolerant mechanism

Not only registry request but service search request
messages are forwarded through the root node of TSWS,
and the RP node with lower depth may endure the high
probability of forwarding more request messages. We will
provide a failure tolerant mechanism to solve the failure
problems in TSWS. We suppose that the two continuous
nodes in the request path will not fail at the same time; in
other words, the probability of that happening is extreme-
ly low. The whole architecture is displayed in Fig.3. In
our mechanism, each RP node records all the nodes of his
children in case one of his children fails. Once the father
node finds the failure of one of its children which the re-
quest is supposed to be forwarded to, it will send the re-
quest to all of its children in its backup table. We think
that the virtual root node in the network should delegate a
group of real RP nodes, in which the nodes know each
other clearly. In this situation these RP nodes can use
several simple classic load-balancing methods such as RRS

() RP node Level 0

O RC node

(@ Failure node Level 1 N,
O Target

~m=Supposed path Level 2
—Real quest

- »Backup

Fig.3 Failure tolerant mechanism

(round-robin scheduling) or WRRS ( weighted round-rob-
in scheduling) to insure the fluency of key nodes, as well
as the scalability of our system.

We use the backup RC node to avoid the failure hap-
pening in all RC nodes. Supposing that one backup RC
node can store the service description of o RC nodes, the
father(s) of those RC nodes should also take note of the
existence of the backup one in case the failure occurs in
its child node. Also, the RP nodes with the backup tables
which contain the RC node should bear that in mind.

3 Semantic Service Matching Algorithm

Receiving a discovery request, the RP node can for-
ward the request to the eligible child node based on the
concept set information in the neighbor table. At the final
RC node, we employ semantic matching algorithms to
look up the probable related web service.

The domain ontology can be described by a graph in
which concepts and relationships between them are deno-
ted by graph nodes and edges. Thus similarity between
concepts can be calculated through the distance between
concept nodes in the graph. An example of an ontology
graph is shown in Fig. 4.

— = subsume
------- = 1nstance

- - =disjoint
— —has Some

Season.

Fig.4 Example of travel ontology

Different kinds of relationships in the ontology repre-
sent different degrees of relevancy between concepts. And
distinguishing weights are taken into account when calcu-
lating the distance between concept nodes. As shown in
Fig. 4, four types of lines represent the relevancy between
concept nodes in different sub domains.

However, one special kind of binary relationship “dis-
joint” has never been considered in existing semantic
matching algorithms. Without representing high relevancy
between concepts, on the contrary, disjoint relationship
only denotes the irrelevancy of concepts. The disjoint
edge is always between brother nodes in the ontology
graph such as an edge between RuralArea and UrbanArea
and an edge between Hotel and Camp in Fig. 4.

It is easy to understand that although RuralArea and
UrbanArea are children of the concept destination, the
two concepts are totally different. When user request is
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about UrbanArea, such as a big city, it is unreasonable to
provide services related to RuralArea.

Therefore, we weigh different kinds of relationships
based on the following rules:

1) Subsume relationship has the lowest weight;

2) Instance relationship has the same weight with sub-
sume relationship;

3) Normal binary relationship between concept nodes
with different father nodes has higher weight than sub-
sume relationship;

4) The weight of disjoint relationship is infinite.

Furthermore, the structure information of the ontology
should also be taken into consideration. The same kind of
relationship at different levels in the ontology can repre-
sent diverse degrees of relevancy. In the ontology graph,
concepts with higher depth (when only subsume relation-
ship edges are taken into consideration) are more con-
crete. We assign the weight value of subsume relation-
ships to the edge between concepts according to the fol-

. . 13
lowing equation'":

W(a, b) =1 +17

kdeplh( b) ( 1)
where depth(b) represents the depth of concept b from
the root concept to node b in the ontology hierarchy; k is
a predefined factor greater than 1 indicating the rate at
which the weight decreases along the ontology hierarchy.

Altogether, the weight of entire edges in the ontology
graph can be calculated as

1 +1/2%*  p(qa, b) =“subsume”

W(a, b) = ! P(a, b) =“instance @
P(a, b) =“hasSome”
® P(a, b) = “disjoint”

Fig. 5 shows the result after calculation.

— subsume
....... e 1015taNCe
—at = disjoint

- - hasSome

Fig.5 Weighted ontology graph

After the weight has been obtained, we can calculate
the distance between the start node and other nodes
through the Dijkstra algorithm. Then the semantic simi-
larity can be measured from the distance as

t
“dis(c,,c,) +t

sim(c,, ¢,) (3)
where ¢ is a predefined factor no less than 1, which deter-
mines the impact degree of semantic distance to semantic
similarity with dis(c,, ¢,). We set # =1 empirically. Ulti-
mately, a similarity degree matrix between concepts is
generated by SSM, which further supports finding out po-
tential related requested concepts conveniently. Then
based on that concept set, the RP nodes can launch the
real search of service descriptions.

4 Experimental Evaluation

Simulation experiments are designed to evaluate the
performance of the proposed architecture. Before analy-
zing the experimental results, two important parameters
need to be determined. First, one is the child number of
each RP node. We suppose that the routing time in each
RP node increases logarithmically with the rise of tuples
in a neighbor table, and all the RP nodes achieve the sta-
tus of their children in one unit time. The cost of status
maintenance is denoted as

S—ln
n-1 @

(4)

et mlog,S(1 +log,n)B

where n, S, m, a, B represent the number of children, the
number of all the RC nodes, the request processed in unit
time, the base request forward process time, and the base
status information process time, respectively. Using the
geometric progression formula, the number of RP nodes
can be obtained from (S -1)/(n —1), and each request
process time in the whole procedure is log, S(1 + log,n)
B, where log,S represents the hops in the query path. We
choose the n to make the lowest cost in unit time, and as
a result, n is set to be 13.

Another major parameter is the capacity of each RC
node. As we can imagine, the process time within each
RC node will definitely grow up with the increase in the
requests to the node. We use ten thousand RC nodes to
measure the growth property of the average response time
under different capacities ( see Fig.6).

As we can see, the response time has an exponential
relationship with the capacity of the RC node. The re-
sponse time exceeds 1 s when the capacity is over 600,
and it will exceed the acceptable response time when the
capacity becomes larger. We take 500 as the applicable
value in our next experimental environment.

4.1 Routing performance and scalability evaluation

To evaluate the routing performance, the average hops
required for a discovery query according to the scale of
our architecture are measured. We limit each RC node to
contain one single concept with minimum granularity. So
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in the Chord4S system, each RC node can map to a sin-
gle peer. Also, we choose four times more peers without
any service descriptions in Chord4S to simulate the P2P
environment. It can be seen from Fig. 7 that our TSWS
has a lower hops cost in the procedure of service discover-
y. In addition, the scalability can be recognized from
Fig.7. With the rapid growth of the RC node, the aver-
age hops only slightly increase due to the tree topology.

—_
(=
1

L —a— TSWS
—e— Chord4S

Average hops
O~ N W B %O
T T

1 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 6 7 8 9 10 11
Number of registry center/10°

Fig.7 Routing performance

Moreover, the failure tolerant mechanism significantly
decreases the probability of failure lookups in our TSWS.
We use the same experimental environment as before. As
shown in Fig. 8, both methods hold very low failure look-
ups when small proportional nodes fail. With the addition
of the failed node, the Chord4S method has more failed
lookups than our proposed method. The most meaningful

1.0
0.9
m0.8'
f=9
Z0.7F
[=3

—a—Chord4S
——T4SWS

1 1 1 1 1 1 1 ]
0 0.05 0.10 0.15 0.20 0.25 0.30 0.350.40 0.45 0.50
Ratio of failed nodes

Fig.8 Failure tolerant mechanism performance

property of our TSWS is that it maintains a very low fail-
ure rate (less than about 0. 1) when the failure node rate
is less than 20% . In reality, this property will help our to-
pology run more robustly.

4.2 Semantic matching evaluation

In order to detect how our SSM performs, we compare
the recall and precision results with those obtained by the
grade matching algorithm and the algorithm proposed by
Fu et al. The test set is services in travel domain from
OWL-S service retrieval test collection version 2( OWLS-
TC v2) ",

As shown in Fig.9, our algorithm has both better recall
and precision than the other two algorithms. For the same
precision, the recall of our result is about 15% higher
than that of the grade matching algorithm and about 8%
higher than that of Fu’s algorithm. Under the same re-
call, the precision of our result also exceeds the other two
algorithms.

—=— Grade maiching algorithm
—— Algorithm proposed by Fuet al.
90 —— SSM

100

Recall /%
o = ®
S & &
T T T

wn
<
T

4o}

30 1 1 1 1 1 1 1 1 1 )
70 72 74 76 78 80 82 84 86 88 o

Precision/%

Fig.9 Comparison of service matching algorithm

5 Conclusion and Future Work

In this paper, we present a distributed system named
TSWS to address the problem of scalable service registry
and discovery. The scalability of our method is ensured
by means of maintaining a balance-tree like topology,
which provides more efficient service registry or discovery
Meanwhile,
equipped to avoid damage caused by single node failure.

for users. a failure tolerant mechanism is
We take advantages of common ontology to derive the
concept set from request, which is further used to locate
the target RC node. Results shown in Fig. 9 experimental-
ly prove that the proposed method has better performance
in recall and precision than the other two competitive al-
gorithms. The introduced relationships of “disjoint” and
“hasSome” not only promote the efficiency but also the
accuracy.
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