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Abstract: In order to improve the estimation accuracy of the
battery’s state of charge (SOC) for the hybrid electric vehicle
(HEV), the SOC estimation algorithm based on advanced
wavelet neural network ( WNN) is presented. Based on
advanced WNN, the SOC estimation model of a lithium-ion
power battery for the HEV is first established. Then, the
convergence of the advanced WNN algorithm is proved by
mathematical deduction. Finally, using an adequate data
sample of various charging and discharging of HEV batteries,
the neural network is trained. The simulation results indicate
that the proposed algorithm can effectively decrease the
estimation errors of the lithium-ion power battery SOC from
the range of +8% to +1.5%, compared with the traditional
SOC estimation methods.
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T he battery management system ( BMS) is important
in the control system of the hybrid electric vehicle
(HEV), which mainly guarantees that the performance of
the battery pack is in a reasonable range of its parame-
ters''’. The BMS can protect the safety, extend the life
and estimate the state of charge (SOC) of batteries.

The SOC is a very important parameter in the BMS'
which cannot be measured directly because of the inaccu-
rate mathematical model™ . In fact, it is influenced by
many factors, such as different charging/discharging cur-
rents, temperature, self-discharge, aging and so on. So
it can be only estimated by means of the battery’s external
characteristics, such as voltage, current and temperature.
Presently, the accurate estimation of the remaining capac-
ity of the lithium-ion power battery is still a difficult
problem in the field of HEV design.

There are many traditional SOC estimation methods,
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such as the resistance measurement method (RM meth-
od), the zero load model method ( ZLM method), the
current integral method ( CI method), the electrochemical
analysis ( EA method), and the voltage measurement
method (VM method). Some new SOC estimation meth-
ods including the Kalman filter method ( KF method), the
fuzzy inference method ( FI method), and the artificial
neural network method ( ANN method) are presented.

So far, the CI method and the KF method have been
implemented in practical applications. The SOC estima-
tion using an adaptive extended Kalman filter was repor-
ted in Ref. [4]. A merged fuzzy neural network and its
applications in battery SOC estimation was investigated
by Li et al”. The ANN method can be found in Ref.
[6].

The FI method and the ANN method have attracted a

%1 In this pa-

great deal of attention in the last few years
per, some concepts about lithium-ion power batteries are
first introduced. Furthermore, the advanced wavelet neu-
ral network ( WNN) architecture is approximately de-
signed. Then, in order to choose additional momentum
WNN inputs, the correlation analysis of a few different
variables is proposed. Training data sets are selected and
the Levenberg-Marquardt training algorithm is adopted.
Other data sets are used to verify the advanced WNN
model. Finally, an example is given to illustrate the ef-

fectiveness of the proposed method.
1 SOC Estimation Model Based on WNN
1.1 Data of lithium-ion battery pack

The HEV simulation software platform ADVISOR col-
lects the data which are used by estimation processes,
such as battery current, voltage, demand power and the
value of the SOC. The data of the battery in the ADVI-
SOR is obtained through the actual testing results of the
researchers in the United States Energy Department Re-
newable Energy Laboratory. The SOC relationship with
the resistance, voltage, current and instantaneous power
is shown in Fig. 1, where C represents the multiple of the
battery’s rated capacity.
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Fig.1 Relationship between SOC and various parameters. (a) Voltage; (b) Current; (c) Resistance; (d) Instantaneous power

1.2 SOC estimation model based on advanced WNN

The structure model and the algorithms of the WNN are
designed, combining the advantages of both wavelet
transform and ANN. The three-layer advanced WNN to
estimate and predict the SOC of lithium-ion power battery
is described in Fig. 2, which can be used as a general
function approximator. The main goal is to estimate the
SOC of the battery when driving a vehicle in Manhattan
drive cycle. Besides, the starting advanced WNN SOC
estimation of the lithium-ion power battery is originally
unknown whether the SOC is 100% or not.

Fig.2 BP network structure of three layers

¢(x) is a generating function in mother wavelet func-
®I " The possible adjustable parameters are composed
of weights w,, u,and 6,. Wavelet translation parameter
b, and wavelet dilation parameter a, are shown in Fig. 2.

tion

; a>0,beR (1)
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The Morlet wavelet function is given in Refs. [ 10 —
11]. The Morlet wavelet translation parameter b and the
wavelet dilation parameter a are given in Ref. [12]. The
derivation process of the Morlet wavelet function is as fol-
lows:

W(x) =cos(1.75x)exp( —0.5x%) (2)
w(x;b) :cos(1.75x;b)exp[ —O.S(X;b)z] (3)

where ¢ (a,, b,) is a generating function in the Morlet
wavelet function finally as

¥(a,, b)) =Cos(1.75 % _bk)exp[ —O.S(M) ]

a, a,
(4)

1.3 Learning algorithm of wavelet neural network

Since the learning algorithm of the WNN uses the stee-
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pest descent method, the wavelet base function is ¢ (x)
and the input is x.

The real output of WNN can be given as
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And the output error of the WNN is

1 L G — b
E=0l- nggzgwmm>
L1

k=1

Grads value and direction are calculated by finite differ-
ences with the first order local deviation. The derivation
process of the output error for the WNN with the first or-
der local deviation can be shown as follows:
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where the Morlet wavelet function (a,, b,) is the WNN

activation function or an orthonormal matrix as follows:

oF oFE
ak+l:ak_§:87’ bk+]:bk_§a7 %
k k
oE oE L1
0,1 =6, _fﬁ» Wi =Wy §6W — (12)
k O
_ oE .
U1 —uk,‘_érBT [
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where ¢ is the learning rate of weights in the Morlet WNN.
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The WNN parameters including w,, u,; and 6, need to
be trained.

An improved gradient descent method is proposed. The
proposed WNN with additional momentum items is ap-
plied to the WNN. The momentum of the additions such
as Aa,, Ab,, AA,, Aw, etc. are described as

ak+l:ak_§£+aAak’ bk+l:bk_‘f§7E+aAbk E
3
oFE 1]
0,1 = fﬁ"'aAaw Wi =Wy _§8 +adw, ]
‘ e ]
oE
Uy =Uy =& ou +aAuk/‘ %
kj

(14)

2 Convergence of Advanced WNN
The weights vector of the WNN W = {a,, b, 6,, w,,

ukj}T. The weights value revision formula is put forward
with the improved gradient descent method as follows:

W(n+1)=W(n)+AW(n)+1)(—§TEV) (15)
. . OF
where = diag {n,, 1., 7> V> Nu}> €=y = F, W
_e-
6W
Theorem 1 GiVen Cm - {Clmax’ 2max ? C3max’ C4max’
ay(k) ay(k) ay(k)
Cimax}T:[man aT’ k aT’ k 7’
. (k). , . The estimation algo-
ow

rithm based on the advanced WNN is convergent, that is
E(k+1) —E(k) <0 k=1,2, ...

if there exist n,, i =1, 2, 3, 4, 5 which satisfy
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1
0<i<7
Tl

imax

where 7 is the learning rate of weights in the advanced

(16)

WNN, »n =diag{n,. n,, 1y, 1., 7.} = diag{n,, n,, 9,

N4> 7Ms)s || - || is the Euclidean norm.

Proof
SOC estimation based on the advanced

V(R = | ECR | =2

Then similar to the proof in Ref. [13],

AV(k) = E(k +1) —E(k) = E(W™)

H aW.(k)

2)+

WNN:

-9’

we have

Consider the discrete Lyapunov function of

(17)
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(18)
If (16) is true, then we have
Bi=m; = Coumi(1 +@)* >0 (19)
From (18) and (19), we obtain
E(W')<E(W)  k=1,2,.. (20)

Thus, the estimation algorithm based on the advanced
WNN is convergent. The proof is completed.

3 Data Training and Simulation Results

3.1 Data for training

aW (k)
c 21 ) We consider a single lithium battery, whose capacity is
N + .. .
a0 € o) ( AW (k) < 1 GW (k) 6 AH. The training data is from HEV under Manhattan
s R drive cycle after simulation. The training data of the SOC
—[n = Cumi(l +a)7] [ H aW.(k) based on the advanced WNN takes the range from 50% to
5 ' 70% as an example. Figs.3(a) to (f) show the input of
2 ‘ oW (k) the WNN model for SOC estimation, which includes the
=1 . . . . .
! current, voltage, temperature, charging efficiency, dis-
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Fig.3 Training data of wavelet neural network in battery packs.

(e) Discharging efficiency; (f) Target SOC

3.2 Training method and training results

The advanced WNN is a learning system with supervi-

sor. We select the TRAINLM training function and the
TRAINGDM adaption learning function. Fig.4 shows the
results of the estimated SOC and the true SOC in the
ANN algorithm, the BPNN algorithm, the WNN algo-
rithm and the advanced WNN algorithm under Manhattan
drive cycle, respectively.

The current, voltage, temperature, charging efficiency
and discharging efficiency are added to the ANN model,
the BPNN model, the WNN model and the advanced

(a) Current; (b) Voltage; (c) Temperature; (d) Charging efficiency;

WNN model of the SOC estimation. The accuracy of the
WNN and the advanced wavelet neural network is verified
by comparing the SOC value output from the model with
the true value of the SOC. The simulation results are
shown in Fig. 4.

3.3 Errors in WNN algorithm and advanced WNN
algorithm

The simulation errors are shown in Fig.5. We con-
clude that the absolute error in the ANN algorithm can be
controlled in the range of +8% ; the absolute error in the
BPNN algorithm can be controlled in the range of +6% ;
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the absolute error in the WNN algorithm can be controlled
in the range of +3%, which meet the demands of practi-
cal work. Error in the advanced WNN algorithm is less,
in the range of +1.5% . Besides, according to the meth-

od of the forecast precision, the advanced WNN model is
better than the WNN model, which can meet the SOC es-
timation requirement of HEV.
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Fig.4 Estimate SOC and true SOC in different algorithms.
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Fig.5 Errors in different algorithms. (a) ANN algorithm; (b) BPNN algorithm; (c) WNN algorithm; (d) Advanced WNN algorithm

4 Conclusions

1) The simulation results show that the SOC estimation
algorithm based on the advanced WNN is an effective
method to estimate the SOC of the lithium-ion power bat-
tery with high performance.

2) The convergence of the advanced WNN algorithm
can be proved by mathematical deduction.

3) The nonlinear estimation accuracy in a certain range
of the SOC and the local minimum problem of the ad-
vanced WNN are improved by training quality and speed.
The SOC estimation error is in the range of +1.5%,
which is better than other traditional algorithms.

In the future work, we will add modified particle
swarm optimization (MPSO) to optimize the additional
momentum wavelet neural network.
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