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Abstract: In order to investigate more realistic group
scheduling problems with position-dependent effects, the
model of general position-dependent group scheduling is
proposed, where the actual group setup times and actual
processing times are described by general functions of the
normal group setup time and position in the sequence. These
general functions are not assumed to have specific function
structures, and are not restricted to be monotone. By
mathematical analysis and proof, each considered problem is
decomposed into a group scheduling process and a job
scheduling process, and each scheduling process is transferred
into the classic assignment problem or the classic single-
machine sequence problem, and then the computational
complexity to solve the considered problem is analyzed.
Analysis results show that, even with general position-
dependent job processing times, both the single machine
makespan minimization group scheduling problems and the
parallel-machine total load minimization group scheduling
problems remain polynomially solvable.
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ecently, scheduling problems with the learning effect
Ror the aging effect have attracted much attention. In
a learning environment, the later a given job is scheduled
in the sequence, the shorter its processing time; while in
an aging environment, the later a given job is scheduled
in the sequence, the longer its processing time. Many re-
searchers have devoted themselves to addressing the learn-
ing or aging effect in scheduling under different machine
environments' ™.

In actual manufacturing, grouping similar products into
families helps increase the efficiency of operations and de-
crease the requirement of facilities. This concept is
known as group technology'®. In group technology, the
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jobs are classified into groups according to the similar
production requirements; there are no machine setups be-
tween two consecutively scheduled jobs from the same
group. Many recent studies have been conducted to ad-
dress the group technology on scheduling problems with
learning or aging effect group setup time. Among these,
several different linear time-dependent aging models of
the group setup time were proposed in Refs. [7 —9]. The
group setup time in Ref. [ 10] was assumed to follow a
simple linear time-dependent learning model. Lee et
al. "™ considered a position-dependent learning setup
time model, which is described by an exponential func-
tion of normal group setup time and the position in the
group sequence. Wang et al. """ gave a revised model of
Zhang et al. "™, and showed that some single machine
scheduling problems are still polynomially solvable under
the revised model.

Note that all of the papers mentioned above concerning
learning effects on scheduling problems are based on spe-
cific learning or aging functions. With the motivation of
this point, this paper aims to study the scheduling prob-
lem with a general position-dependent group setup time
model, where the general group setup time function has
no specific function structure, and is not restricted to fol-
low a learning or aging model. To the best of our knowl-
edge, this kind of group setup time model is not found at
the existing research about group scheduling. In many ac-
tual scenarios, workers gain the experience from produ-
cing products, while the fatigue of workers and the abra-
sion of machines are accumulating at the same time. It is
obvious that learning and aging effects are sometimes
concurrent and difficult to be described by one or two
specific functions. Therefore, the general position-de-
pendent group setup time model considered in this paper
is worth being studied in both theory and practice.

1 Problem Formulation

The problems under study can be formally described as
follows. There are n jobs to be classified into / groups to
be processed on m parallel machines. All the jobs and
machines are available at time zero, and are not allowed
to be preempted in the processing of producing a job. The
jobs in the same group are processed consecutively. If the
machine switches to process from one group to another, a
group setup time is required. The group setup time is as-
sumed to follow the following general position-dependent
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model. If group G, is scheduled in the r-th position in the
group sequence on parallel machine k, its actual setup
time is defined by

so=s(it)  it=1,2,..,1 (1)

where s/, is a general function of the group number i and
position number ¢ in the group sequence, and it is not re-
stricted to be monotone. For different groups, the corre-
sponding functions can be different. For simplicity, we
use PDG to denote the position-dependent group setup
time model.

The job processing time model considered in this paper
concerns the position-dependent learning effect whereby if
job J is scheduled in the r-th position of group G,, its
actual processing time is defined by

i=1,2,..,0 j=12,...,n; r=12,..,n,
(2)

which is a general function of the group number i, job
number j and position number r in group sequence. Simi-
lar to the definition of the actual group setup time s}, the

P =p;(i,j,7)

actual processing time p;; is not restricted to be monotone.
Note that Mosheiov'' proposed a similar job processing
time model: p; =p(j, r), where p; is the actual process-
ing time of the job J; scheduled in the r-th position in the
job sequence. Since the function p (i, j, r) can vary from
different jobs, the actual job processing time model con-
sidered in this paper is an extended version of the model
introduced in Ref. [ 14]. For simplicity, we use PDP to
denote this kind of general position-dependent processing
time model.

Let C!_ denote the the maximum job completion time
on machine M,, and let L, denote the total load of all ma-

m
. . k . .
chines, i.e., L. = C. . For single-machine schedu-
T max
k=1

ling, C,_,. denotes the maximum job completion time on
the machine, and it is obvious that L. = C,, . For parallel
machines scheduling, the objective is to minimize the to-
tal load of all the machines. While for the single-machine
scheduling problem, the objective is to minimize the
makespan. By using the three-field notation scheme for
the scheduling problem introduced by Graham et al. '™,
the single machine makespan minimization group schedu-
ling problem can be denoted as 1 | PDG, PDP |C, , while
the parallel-machine total load minimization group sched-
uling problem can be denoted as P, | PDG, PDP |L,.

For the 1 |PDG, PDP|C,_ problem, we use s to de-
note the actual setup time of group G, scheduled in the #-

m

th position in the group sequence (i.e., s;=s,(i, 1)).
Let s'" be the actual setup time scheduled in the i-th posi-
tion in the group sequence. Let p|; be the actual process-
ing time of the job scheduled in the r-th position in the i-
th group, where there are n;, jobs in the group. We can

obtain the makespan of the problem 1 | PDG, PDP |C, as
follows:

[t [11 [2]
Cow =5 +(py +p + o
1] [2] npy [
(P + P + oo P05 + o +50 +

[

[

[1] [2] ny _
(p +p) =

nyy [2]
+pi) +sT +

1
I +p[l] + ...
1 1 Ny

Ul i
s+ zl’m

Jj=1 i=1 r=1
We can reformulate the makespan C,, as follows:

1 1 1 n; n;
Cow = 2 X sk + 2 3 X px (3
j=1 t= i=1 j=1 r=
where x, is a 0/1 variable such that x, =1 if group G, is
the #-th group to be processed, and x, =0, otherwise; X,
is another 0/1 variable such that x;, =1 if job J; is sched-
uled in the r-th position in group G,, and x, =0, other-
wise.
With the similar method, we can obtain the total load
of the P, | PDG, PDP |L, problem as follows:

1 1 n;

1 m n
Ly =3 % Y Xy + 2, 2 2%, (4)
i=1 k=1 =1 i=1 j=1 r=1
where x,, =1 on the condition that group G, is scheduled
in the #-th group position on machine M,, and x, =0,

otherwise.

2 Main Results

In this section, we first investigate the single-machine
group scheduling problem. We propose several lemmas,
which are useful in the following theorems.

Lemma 1 The single machine scheduling problem of

1 1

minimizing Y, Y six, can be optimally solved in O(I*)
i=1 t=1

time.

1 1

Proof The problem of minimizing 2 2 six, can be
i t=1

it
i=1

transferred as the following assignment problem with / x [
group positions:

i 1
min Y Y six, (5)
i=1 t=1

S. t.
1
Yx,=1 i=1.2,..,1 (6)
i=1
1
x, =1  t=12,..,1 (7)
t=1
x,=lor0 it=12 .1 (8)

where x, =1 if group G; is the 7-th group to be processed,
and x, =0, otherwise. It is well-known that an assign-
ment problem with / x [ group-positions can be optimally
solved in O(I’) time (by the Hungarian method, see,
e.g. Ref.[16]). Thus, the computational complexity of
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solving the single machine scheduling problem of minimi-

zing z" 211 = six, is O(I).
Lel’lzllmfaz 12 In the group G,, the scheduling problem of
minimizing z 2 Pp;X;, can be optimally solved in O( n)
time. o
Proof Similar to the proof of Lemma 1, the problem

of minimizing » " pix, can be transferred as the fol-
r=1

j=1
lowing assignment problem with n, x n, group positions:

n;

min Y Y pix, (9)
j=1 r=1
S. t.

xo=1 j=12 ., (10)

=
ZXﬂ =1 r=12,..,n (11)

r=1
x. =1or0 Jr=1,2,...,n, (12)

where x;, =1 if job J; is scheduled in the r-th position in
group G,, and x, =0, otherwise. For the n; x n, assign-

ment problem (9)-(12), the problem of minimizing

n

Z Z p;X;, can be optimally solved in O(n}) time (by
r=1

i
j=1
the Hungarian Method, see, e. g. Ref.[16]).
The 1 |PDG, PDP|C, problem can be
optimally solved in O(n’) time.

Proof Based on Eq. (3) and Lemmas 1 and 2, the
1|PDG, PDP|C,, problem can be optimally solved in
two steps. The first step schedules all the groups accord-
ing to the solution of the assignment problem (5)-(8).
The second step schedules all the jobs in group G,(i =1,

Theorem 1

2, ..., 1) according to the solution of the assignment prob-
lem (9)-(12).
From Lemma 1, the first step can obtain the optimal
1 1

group schedule of minimizing 2 z six, in O(I) time.
i=1 t=1

From Lemma 2, the second step can obtain the optimal

n

schedule of the jobs in group G, to minimize » Y pix,
=1

=
in O(n}) time. Then, the total computational complexity

1 1
of the two steps is O(I') + Y, O(n}) . Sincen = Y n,, it
j=1 j=1

!

can be obtained that I’ <n’ and Z no<n.
j=1
upper bound of the total computational complexity of opti-

mally solving the problem 1 |PDG, PDP |C,__is O(n’).

In the following, we consider a special case of the
PDG model. The actual setup time of group G, scheduled
in the t-th position in group sequence is defined by

s;=f.(s)g.(r r=1,2,...,1

Hence, the

max

(13)

where f(s;) is the function of s,, and g (t) is the func-
tion of t. While two groups are scheduled in the same po-
sition, the group with a longer normal setup time always
has a longer actual setup time. In this paper, f.(s,) is as-
sumed to be non-decreasing in s,. For simplicity, we use
SPDG to denote this kind of special position-dependent
group setup time model.

Lemma 3 In the SPDG model, if g ,(r) is non-de-

1 1
creasing in r, » Y six,can be minimized by sequencing
i=1 r=1

all the groups in the classic shortest processing time first

(SPT) rule about the normal group setup times; other-
1 1

wise, if g (r) is non-increasing in 7, z z

i=1 1=1
minimized by sequencing all the groups in the classic lon-
gest processing time first (LPT) rule about the normal
group setup times.

Proof The results can be obtained by a standard pair-
wise interchange technique.

Considering a special case of the PDP model, the actu-
al processing time of job J; scheduled in the r-th position

t

X, can be

ivit

in group G, is denoted as

r=1,2,....n, (14)

i

p;=1(p;)g,(r)

where f,(p;) and g,(r) are the functions of p, and r, re-
spectively. Similar to the function f,(s;), the actual setup
time function f,(p,) is assumed to be non-decreasing in
p;- We use SPDP to denote this special position-depend-
ent processing time model.

Lemma 4 In the SPDP model, if g, r) is non-de-

creasing in r in group G,(i=1,2, ..., 1), Zp;xj, can be
=1

minimized by sequencing all the groups in the SPT rule,

n

else if gp( r) is non-increasing in r, Zp
r=1

X, can be mini-

i
mized by sequencing all the groups in the LPT rule.

Proof Similar to the proof of Lemma 1, the results of
this lemma can also be obtained by a standard pair-wise
interchange technique.

Theorem 2 1) The 1 | PDG, SPDP|C
be optimally solved in O( ) +0( nlogn) time;

2) The 1 |SPDG, PDP |C,, problem can be optimally
solved in O( n’) time;

3) The 1 |SPDG, SPDP |C, problem can be optimally

max

problem can

max

solved in O(nlogn) time.

Proof With the similar analysis method in Theorem 1,
it can be analyzed that the problems 1 |PDG, SPDP|C, .
1|SPDG, PDP|C, and 1 |SPDG, SPDP|C,_ can be opti-
mally solved in O(I’) + O(nlogn), O(n') and O(nlogn)
time, respectively.

In the following, we consider the P, |PDG, PDP|L,
problem. We first propose two lemmas, which are useful
in the following theorem. Note that
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n;

i n;
Since the term of z 2 Zp;xjr in L, is the same as
i=1 j r=1

=1 j=1
the second part of makespan (i.e., Eq.(3)), we focus
1 m 1

on the z Z 2 s, x,, minimization scheduling on paral-

i=1 k=1 =1
lel machines.

Lemma 5 For the m parallel machines scheduling,
1 m 1

the Y 3 Y six, minimization problem can be optimal-

i=1 k=1 r=1

ly solved in O(I"*?*) time.

Proof Each group and its setup time can be viewed as
a special job and its processing time, respectively. Then,
the scheduling of each group can be sorted by the method
in Ref. [14]. Similar to the analysis in Ref. [14], it is
easy to obtain that the total processing time minimization
problem can be optimally solved in O(I"**) time.

Lemma 6 For the m parallel machines scheduling, if

the actual group setup times are increasing in position 7,
1 m 1

the 2 Z Z sy, x,, minimization problem can be optimal-
t=1

i=1 k=1
ly solved in O( ) time.

Proof In the following, we will prove this lemma in
three steps.

First, we will show that all the groups should be sched-
uled continuously from the starting of each machine. Let
[, denote the number of groups on machine i. If a group is
assigned to position » on machine i, but no group is as-
signed to position » — 1 on this machine. Due to the in-

creasing monotonicity of the group setup time, the
1 m 1

2 2 2 s4.x,, can be reduced by moving the job from

i=1 k=1 1=1
position r to position r — 1 while the other groups are un-
changed. By repeating this procedure, we guarantee that
all the groups should be scheduled continuously from the
starting of each machine in a feasible schedule.

Secondly, we prove that the number of groups on each
machine should follow the machine balance principle
(i.e., [I/m]<l,<|[l/m]+1). The group, machine and

1 m 1

objective > > > syx,, are quite similar to the job,
t=1

i=1 k=1
group and makespan in Ref. [17],
tradiction method was used to prove the group balance
principle in Ref. [17], and it is easy to use the similar
method in Ref. [17] to prove the machine balance princi-
ple for this problem.

Finally, since all the groups should be scheduled con-
tinuously and the number of groups on each machine
should follow the machine balance principle, we can ob-
tain the group allocation on each machine (i.e., the first

respectively. A con-

L/m|<I <|I/m] + 1 positions on each parallel ma-
chine). That is to say, each of the / jobs need not to be

potentially assigned to any position on any of the ma-
chines (i.e., to /m positions), but to / positions (i.e.,

S o= 0.
i=1

1 m 1

z 2 2 six,, can be transferred as the following as-

i=1 k=1 r=1
signment problem with / x [ group positions:

Therefore, the problem of minimizing

(15)

(16)

(17)
i=12, .0 k=1,2,...m; 1=1,2,....1,
(18)

Xy, =1or0

where x,, =1 if group G, is scheduled in the ¢-th position
on machine k, and x,, =0, otherwise. The above assign-
ment problem (15)-(18) is an [ x [ group-position prob-
lem, which can be solved in O(F’) time (by the Hungar-
ian method, see, e.g. Ref.[16]).

Let INC denote that the actual group setup time s, is
increasing in ¢. Then, the parallel machines group sched-
uling problem with increasing position-dependent group
setup times and total load minimization objective can be
denoted as P, | INC, PDG, PDP|L,. We can denote the
other relevant problems by the same method.

Theorem 3 1) The problem P, |PDG, PDP |L, can
be optimally solved in O(I"**) + O(n’)) time;

2) The problem P, |PDG, SPDP|L, can be optimally
solved in O(I""*) + O(nlogn) time;

3) The problem P, |INC, PDG, PDP |L, can be opti-
mally solved in O( ) +0(n')) time;

4) The problem P, | INC, PDG, SPDP \LT can be opti-

m+2

m

m

mally solved in O(!""") + O(nlogn) time.

Proof Based on the conclusions of Lemmas 1 to 6, it
is easy to prove this theorem by the similar proof method
of Theorem 1.

In the following, we list the computational complexity
of all the considered problems in Tab. 1.

Based on the above results, we propose a solving algo-
rithm for the group scheduling problems with general po-
sition-dependent effects.

Algorithm 1

Step 1 Based on the results of Lemmas 1, 3, 5 and
6, schedule all the groups.

If all the actual group setup times satisfy the SPDG
model in single machine scheduling, list all the groups by
the LPT rule (i. e., increasing case) or the SPT rule
(i.e., non-increasing case). If all the actual group setup
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Tab.1 Computational complexity of several relevant problems

Problem Complexity Theorem

1 | PDG, PDP |C,,, o(n®) Theorem 1

1 | PDG, SPDP |C,,,, O(P) +O(nlogn)  Theorem 2

1 | SPDG, PDP |C,,, o(n®) Theorem 2
1| SPDG, SPDP |C,,,, O(nlogn) Theorem 2
P, | PDG, PDP |L, o) +0(n*) Theorem 3
P, | PDG, SPDP |L; O(I"*?) + O(nlogn) ~ Theorem 3
P, | INC, PDG, PDP |L, o(P) +0(n) Theorem 3
P, |INC,PDG,SPDP |L;  O(P) + O(nlogn)  Theorem 3

times satisfy the PDG model in single machine schedu-
ling, list all the groups by the classic Hungarian algo-
rithm. If all the group setup times simultaneously satisfy
the INC model and the PDG model in parallel machines
scheduling, schedule all the groups by the classic Hungar-
ian algorithm and the machine balance principle. If all the
actual group setup times satisfy the PDG model in parallel
machines scheduling, list all the possible group combina-
tions on the machines, then schedule all the groups by the
classic Hungarian algorithm for each group combination.
Step 2
schedule all the jobs in groups.

Based on the results of Lemmas 2 and 4,

If all the job processing times satisfy the SPDG model,
list all the jobs by the LPT rule (i.e., increasing case)
or the SPT rule (i.e, non-increasing case). If all the job
processing setup times satisfy the PDG model, list all the
jobs by the classic Hungarian algorithm.

Step 3

ing group, then we obtain the total schedule.

Insert all the job sequences in the correspond-

Example 1 The following example is given to illus-
trate the efficiency of Algorithm 1. The algorithms were
coded in Matlab version 2010a and the experiments were
performed on a personal computer powered by an Intel
Pentium(R) Dual-Core CPU E6300 @ 2. 80 GHz with
512 MB RAM operating under Windows XP. Consider an
example that there are three parallel machines in a work-
shop and 30 jobs, which are divided into nine groups and
All the actual

group setup times on parallel machines are given in Tab.

need to be scheduled on the machines.

2. We propose the actual job processing times of all the
jobs in Tabs. 3 to 7. From Tabs. 2 to 7, it can be seen
that all the group setup times simultaneously satisfy the
INC model and the PDG model, and the actual job pro-
cessing times satisfy the PDG model. Based on Algorithm
1, we list all the groups by the classic Hungarian algo-
rithm and the machine balance principle, and schedule all
the jobs by the classic Hungarian algorithm. The compu-
tational results show that the optimal total load (i. e.,
153 min) is obtained in 0.950 4 s. The optimal schedule
is proposed in Tab. 8.

Tab.2 Actual group setup times

Position number

Job number

1 2 3 4 5 6 7 8 9
1 2 3 8 10 14 14 16 17 17
2 2 7 9 10 12 14 18 20
3 4 11 11 13 14 19 20 20 20
4 11 7 7 11 15 15 16 19
5 1 3 4 6 9 12 16 17 19
6 33 5 6 6 6 8 16 19
7 1 6 12 13 14 14 16 16 16
8 2 6 8 10 10 14 16 16 17
9 1 4 4 6 8 11 12 15 17

Tab.3 Job processing times of groups 1, 3

Position number

Job number
1 2 3
1 10 10 2
2 2 5 5
3 10 9 10

Tab.4 Job processing times of groups 2, 6

Position number

Job number
2 3
1 8 1 7
2 10 9 8
3 7 10 8

Tab.5 Job processing times of groups 4, 5

Position number

Job number
1 2 3
1 4 8 1
2 7 1 1
3 2 3 9

Tab.6 Job processing times of groups 7, 8

Position number

Job number

1 2 3 4
1 5 8 2 4
2 5 3 2 6
3 7 7 5 3
4 8 7 10 8

Tab.7 Job processing times of group 9
Position number
Job number

1 2 3 4
1 3 10 3 3
2 6 6 9 10
3 7 2 3 4
4 9 2 9 2

Tab.8 Optimal schedule and results

Machine Sequence on the machine
. Gy (Jors Jogr Jozs Jo3) Gs(Jg3s J1o Jea)» Ga(Jys,
Machine 1
Jaar Ja)
Gy (Jgu, Jgo, g1 Jg3)s Gy(Jaz, oy, Jan), Gs(Jss,
Machine 2 8(Jsar V20 Jgin g3 2 (U3, o1 I 5(Js3
Ispo Js1)
G, (Jyy, J700 Jops J33)s Gy (U, i3, J1y), Gs(Jy,,
Machine 3 7Jas I720 s s 1 Y3 3WUs
Ji30 J31)

3 Conclusion

In this paper, we investigate group scheduling with
general position-dependent group setup times and job pro-
cessing times. The single machine makespan minimiza-
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tion problem and the parallel-machine total load minimi-
zation problem are both considered. Moreover, several
special cases, where the group setup time or the job pro-
cessing time is described by a product function, are also
investigated. From our studies, it can be seen that all the
The time
complexity results for all the considered problems are
presented. Our future research will be directed to investi-
gate other models of general learning or aging effects on
group scheduling, or other performance measures.

studied problems are polynomially solvable.
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