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Abstract: The concept of weak Hopf group coalgebras is a
natural generalization of the notions of both weak Hopf
algebras ( quantum groupoids) and Hopf group coalgebras. Let
7 be a group. The Morita context is considered in the sense of
weak Hopf 77-coalgebras. Let H be a finite type weak Hopf 7-
coalgebra, and A a weak right 77-H-comodule algebra. It is
constructed that a Morita context connects A#H " which is a
weak smash product and the ring of coinvariants A“". This
result is the generalization of that of Wang’s in the paper
“Morita contexts, 77-Galois extensions for Hopf 7-coalgebras”
in 2006. Furthermore, the result is important for constructing
weak 77-Galois extensions.
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‘ x T eak Hopf algebras given in Ref. [1] are the gener-

alizations of ordinary Hopf algebras in the follow-
ing sense: the defining axioms are the same, but the mul-
tiplicativity of the counit and the comultiplicativity of the
unit are replaced by weaker axioms. The easiest example
of weak Hopf algebras is the groupoid algebra. A survey
of weak Hopf algebras and their applications can be found
in Ref. [2]. It has turned out that many results of classi-
cal Hopf algebra theory can be generalized to weak Hopf
algebras, for example, the Maschke-type theorem and the
Morita context over weak Hopf algebras were given by
Zhang"'.

Turaev'" introduced the notion of a modular crossed -
category. Examples of a 7r-category can be constructed
from the so-called Hopf 7r-coalgebras in which one of the
key points is the notion of a crossed Hopf 7r-coalgebra
(called a Turaev 7r-coalgebra), sr-coalgebras and Hopf
mr-coalgebras generalized usual coalgebras and Hopf alge-
bras, in the sense that we recover these notions in the sit-
uation where 77 is the trivial group. Virelizier'” started an
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algebraic study of this topic, which was further developed
in Ref. [6]. As a generalization of a weak Hopf algebra,
Van Daele and Wang'” introduced the notion of a weak
Hopf group-coalgebra. Motivated by the above ideas, in
this paper, we construct a Morita context connecting a
weak smash product A#H " and A" for a finite type weak
Hopf 77-coalgebra H, where A is a weak right 77-H-co-
module algebra.

Throughout this paper, we let 77 be a group with unit 1
and k a field. All algebras are supposed to be over k, as-
sociative and unitary. All maps are k-linear and @ means
®, unless otherwise specified, etc.

1 Preliminaries

In this section, we recall some basic definitions and re-
sults about weak Hopf group-coalgebras introduced by
Van Daele and Wang'”'.

Definition 1
C={C,},., together with a family of k-linear maps A, ;:
C—C,®C, and a k-linear map g: C,—k, such that the

following conditions are satisfied:

A 7r-coalgebra is a family of k-spaces

(A,,®id)A,, =(id. ®A, YA,
(id. ®&)A, , =id, =(£®id.)A, ,

Ya, B yem
Vaem

We use Sweedler’s notation for a comultiplication in
the following way: for any o, B e 7 and c € C,,, we
write A, ;(¢) =c(, , Q-

Definition 2 A weak semi-Hopf 7r-coalgebra H =
{(H,p, 1, A e}, is a family of algebras {H, u,,
1.},., and at the same time a 7-coalgebra {H, A =
{A,;}, €}, 5., s @ homomorphism of algebras such that
the following conditions are satisfied:

(A,,®idy)A,, (1,) =(4,,(1,)R1)(1,®4, (1))
(4,,®id,)A,,(1,.)=(1,84, (1,))(A,,(1,) L)
for all o, B, v € 7, and the counit g: H,—k is a k-linear
map satisfying the identity

S(th) :g(gx[zj))g(x(l_[)h) :S(gx(l_l))g(x(z‘l)h)

forall g, h, xe H,.

Furthermore, a weak Hopf 7r-coalgebra H = {H, u,,
1, A e}, ,is a weak semi-Hopf 7-coalgebra endowed
with a family of k-linear maps

S={S,:H—H_}

aeT
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(called an antipode) such that the following conditions
are satisfied:

w (S, ®id, A, (h) =1, e(hl,,)
/La(idﬂu®sa")Aa,a"(h) =1y el h)
Sa(g(l_a))g(zva ‘)Sa(g(s,a)) :Sa(g)

forall heH, geH,.
Now, let H be a weak Hopf m-coalgebra. Define a
family of linear maps

e ={e\H—H_)} ey(h) =e(1,, 1,

aew

and

e = {gZ:Hl—>Ha} 8;(h) =8(h](2,1))1<1.a)

where &', &° are called the 7r-target and 7r-source counital

aem

maps, and the notations

H: =¢g'(h) ={H,=¢(H,)}
H: =¢g'(h) ={H. =¢(H,)}

aem

aem

for their images.

Definition 3 Let H be a weak Hopf 7r-coalgebra and
A an algebra. A is called a weak right 77-H-comodule al-
gebra if the following conditions hold: for all a, b € A
and o, B e,

1) al,, ®1,, , =a,,®e.(a, ) forallacA and a e
;5

2) (po®id,)py =(id,®A, ,)p, 4 forall a, e

3) pi(ab) =pi(a)p’(b), forall a, be A and a e ;
where the coaction is denoted by p’(a) = ag, Qay, , for
allaeA and o e 7.

Let A be a weak right 77-H-comodule algebra. We de-
fine

AM={aeA|pl(a) =al,, ®1,, )}

which is called a coinvariant set of A. It is easy to see
that A°" is an H-subalgebra.

2 Morita Context

In what follows, let H be a finite type weak Hopf -
coalgebra with an antipode S and A a weak right 77-H-co-
module algebra. Then A is a weak left H* = @ __H_
module algebra with the structure map given by f—a =
D, (fi a, y)a, forallaecA, feH;. So we can de-
fine a weak smash product on the k-vector space A &
u-H, , where H_ is a left H,'-module via its multiplica-
tion and A is a right H'-module via a *f=a(f-1,). Its
multiplication is given by the following formula;

(a#f) (b#g) :abﬁj#(f(;bu,aj )&

forall a,be A, fe H , g € H;, where the module
structure «— is given by (f«h) (k) =f(hk) for all h,
keH,, feH,.

As described above, we can easily obtain the following

lemmas.
Lemma 1 With the notation as above, A#H_ is an
associative algebra with the unit 1,#1,,..
Lemma 2 With the notation as above, A is A#H" -
A" -bimodule and A“"-A#H " -bimodule with the module

structures given by

(a#f)-b = @aby (f. by, )
be(atf) = ®byag (S (b))

and usual A“"-module structure on A.
Now we can obtain the main result of this paper.
Proposition 1 Let H be a finite type weak Hopf -
coalgebra with an antipode S and A a weak right 77-H-co-
module algebra, if there exists a nonzero left 7r-integral
A=(A,),.,. Then we have a Morita context (A#H",

A" 7, w), where the connecting maps are given by

T AQ wA—A#H,, T(a®b) = D ab,#A b, ,
/"L:A®A:3H,]A_)AC0H’ m(a®b) =a@a[m bio# A Ay bp1ay)

Proof 1) 7 is an A#H_ -bimodule map and it is also
A*"-linear. Now let us check that 7 is a left A#H_ -mod-

ule map as follows: for all fe H,

(c#)T(a®b) =
ag?vcalm b #((fe—ayy ) Ap) by o =

ag?ﬂca[mb[m#“ a[l,a]>()‘aﬁ‘_b[1.aﬁ]) =
7((c#f) - a®b)

Next, we check that 7 is a right A#H_ -module map as
follows ;

7(a®b - (cHf)) =

aﬁ@ﬂ“bw o1 #A b 1101 010 S0l 108)

<f%sﬁ_'%(b[l.al(2=ﬁ") Cliaph ) 1 ) =
ag?ﬂabm]Cm]#[)‘a(f‘_sﬁil‘(bn,auz,zz")cn,al(z,ﬁ">))]‘_

bll.al(lvaﬁ)cll.al(l,aﬁ) =
Dby iy #A by, €1.)f = T(a®D) (cH)

coH

Finally, for all ce A™", we have

T(ClC, b) = @aCbLQJ#)\aHb[I.aJ =

aew

@ a(cb) o #A (b)), 4 =7(a, cb)

coH

2) wis an A*" -bimodule map and it is A#H_ -linear.
One checks easily that g is an A°"-bimodule map, here
one fact that needs to be considered is that y is A#H, -

linear, for a, b,ce A and fe H,,

pla-(cHf) @b) =

“B@ﬂam b 101 €101 S Mg @11 it Crrp . D110 )
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71 2] j—
<f‘_Sm"(a[1.B1(z.a">‘[1,m<2.a">)’ 1) =
aﬁ@ﬁalol b i </\B’ 1.5 Cp b gacp )< by g, )=

uﬁ@“a[mclmb[onm (A a5 €00 roap ) S i) =

u(a®(c#f)-b)

3) It is not difficult to verify that r and yu satisfy asso-
ciativity.

Corollary 1 Let H be a finite type Hopf #-coalgebra
with an antipode S and A a right 77-H-comodule algebra,
if there exists a nonzero left 7-integral A = (A, ) _..
Then we have a Morita context (A#H", A", 7, 1),
where the connecting maps are given by

T:AQ wA—A#H, , T(a®b) = Dab, #A b,
M:A®A#H;AHACOH’ u(a®b) = @a[uJb[oJ#<)‘w AUia b“,aJ>

aem
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