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Abstract: In order to obtain a better sandstone three-
dimensional (3D) reconstruction result which is more similar
to the original sample, an algorithm based on stationarity for a
two-dimensional (2D ) training image is proposed. The
second-order statistics based on texture features are analyzed to
The
multiple-point statistics of the training image are applied to

evaluate the scale stationarity of the training image.

obtain the multiple-point statistics stationarity estimation by the
multi-point density function. The results show that the
reconstructed 3D structures are closer to reality when the
training image has better scale stationarity and multiple-point
statistics stationarity by the indications of local percolation
probability and two-point probability. Moreover, training
images with higher multiple-point statistics stationarity and
lower scale stationarity are likely to obtain closer results to the
real 3D structure, and vice versa. Thus, stationarity analysis
of the training image has far-reaching significance in choosing
a better 2D thin section image for the 3D reconstruction of
porous media. Especially, high-order statistics perform better
than low-order statistics.
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he reconstruction of three-dimensional (3D) porous
T media is of great help to have an accurate 3D recon-
struction of the microstructure as input to computer mod-
els in clarifying and quantifying material properties that
are difficult to obtain experimentally. The focus on 3D
reconstruction algorithms has been on implementing re-
production based on the 2D image to generate realizations
using different spatial information patterns''™ .
stance, the fast Fourier transform ( FFT) algorithm em-
ploys statistical information of porosity and autocorrela-
tion functions from 2D images'”. The two-point autocor-
relation function is often used as a reconstruction condi-
¢ The multi-
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ple-point geology statistics method which extracts the con-
figuration patterns from 2D images has become a popular
U1 In conclusion,
the statistical feature plays an important role in structure

reconstruction algorithm in recent years

reproduction as a bridge between 2D images and 3D reali-
zations, regardless of the mathematical representation.

As a commonly used concept in multiple-point geosta-
tistics, a training image is the database of geological pat-
terns in various forms. But to be a training image, a 2D
image must satisfy a crucial condition, namely, the prop-

erty of stationarity'”’

. Stationarity means that the features
and properties of the structure are independent of the loca-
tion and size; that is, the distribution of the structure in-
side the sub-region of the training image does not change

when the sub-region is shifted"”

. The assumption of sta-
tionarity about the training image must be ensured before
3D reconstruction. Otherwise, the stochastic simulation
of the spatial information will be impossible.

As far as we know, there has been no relevant research
on selecting training images in China up to now. Though
some foreign literature takes that into account, porosity is
the only parameter used for the selection of training ima-
ges!". Actually, porosity is not a suitable representation
of the features and properties of the structure information,
since it is possible for images with the same porosity to
have big differences in structures. Mirowski et al. "** pro-
vided an analytical method of training images for multi-
point geostatistics based on orientation, texture features
and categories of the images. Since 3D reconstruction for
porous media focuses on pores and grains, binary images
are generally used as training images for reconstruction re-
alization. Then orientation and category-based methods
become inapplicable. In this paper, both the texture fea-
tures and the multi-point statistics are employed as assess-
ments of the stationarity of training images. As indicated
by experiments that human perception is sensitive to the
second-order statistics, the second-order analysis of ima-
ges, e. g. the gray level co-occurrence matrix (GLCM),

"I Fur-

becomes a well-known method for image analysis
thermore, the multiple-point statistics ( MPS) contains
higher-order statistics for 3D reconstruction. A process of
stationarity assumption of the MPS is of great significance.

In this paper, the scale stationarity is introduced based
on the texture features to analyze the second-order spatial

information of the training image. Then, a high-order
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statistics method based on the multi-point density function
(MPDF) """ is followed for the MPS stationarity analysis.
The scale stationarity score and MPS stationarity score on
the 2D training image are obtained for the 3D reconstruc-
tion of porous media. Finally, the property of the recon-
structed 3D pore structure is evaluated with local percola-
tion probability and two-point probability to test the signif-
icance of the methods for the selection of training images.

1 Proposed Method

To evaluate the stationarity of the training image for 3D
pore structure reconstruction, a method based on textural
analysis and multiple-point statistics is proposed. The
method consists of scale stationarity estimation and MPS
stationarity estimation.

1.1 Scale-stationarity estimation of training image

The second-order texture feature is used to estimate the
scale-stationarity of the training image. The training image
is divided into nine overlapping sub-regions. The size of
each region is chosen to be 1/4 of the whole image area
(see Fig.1). One of these sub-regions is extracted as the
reference pattern, to which scale transforms are applied.
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Fig.1 Nine sub-blocks in training image

The gray level co-occurrence matrix (GLCM) method
is used for extracting the second-order statistical informa-
tion. It is a matrix of which the element means the rela-
tive frequency for two pixels, with intensity i and j re-
spectively, occurring at a displacement distance within a
given neighborhood. We usually have four angular gray
level co-occurrence matrices for a given distance.

Haralick et al. """ proposed 14 statistical features ex-
tracted from the GLCM and four most relevant features
are selected to reduce the computational complexity'®'.
These four features are energy E, entropy H, contrast C
and inverse difference moment /, respectively. They are
computed from each co-occurrence matrix using the fol-
lowing formulae:

E =

G-1 G-l

3 (i1} ()

i=0 j=

<.

H=— 2 Zp(i,j)logz[p(i,j)] (2)
C=Y ¥ (-ppi) (3)
1=y y i 4)

where p (i, j) is an element of the co-occurrence matrix
which means the probability of the occurrences for the
pixel pair (i, j); and (i, j) corresponds to the pair of
gray levels i and j; G is the number of gray levels.

Two procedures are processed at the beginning of scale
stationarity estimation as follows:

1) A series of scale factors or deformation parameters
are applied to the reference pattern ( extracted in Fig. 1).
Parameter a(x, y) is the scale factor along the x and y ax-
es. Then we obtain the vector Vi, . ,, which is the tex-
ture feature vector computed over the deformed reference
pattern.

2) The other procedure is to compute vector V,
which is the texture feature vector computed over each
sliding window as shown in Fig. 1, with the same size of
the reference pattern. The sliding window in this flow has
no deformation, which means that the scale factor a(x, y)
=(1, 1).

Then the Euclidian distance between these two vectors
is calculated. For different locations of the sliding win-
dows and different scale transformed reference patterns,
1, x, y and VRP, a(x,y) *
For each sliding window, the minimum Euclidian dis-
tance derives a scale factor a(x, y) as follows:

we have Euclidian distances between V,

a(x,y) =argmin{ ¥ [V, (i) = Vg, (D'} (5)

where a(x, y) is the best scale factor; N is the number of

elements in the vectors V or Ve uvy» containing N

Loy
=4 x4 =16 elements, namély four GLCM elements in
four different angle directions.

Nine minimum Euclidian distance dilation factor cou-
ples a(x, y) yield a best affinity map, i.e., the best mat-
ches between the sliding window and the reference pat-
tern. The spread of the points p,, p,, ..., p, defined by
the dilation factor couples is computed by the singular
value decomposition (SVD):

X; T
[ ] =UxSxV (6)
Vi iell,n)

where S is the augmented diagonal matrix with entries s,
s,, while U and V are the orthonormal matrices. The pa-
rameters x, and y, are associated with the cloud of point p,,,
through a bijection in order to transform the dilation factor
into the scale-space for principal component analysis''”.

To be more specific, the dilation factors 1/2, 2/3, 3/4,
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1, 4/3, 3/2, 2 along the x axis and y axis are mapped to
-1, -2/3, -1/3, 0, 1/3, 2/3, 1, respectively.
The scale stationarity score S, for the image is defined as

Sl=1—min{1,Du(1+S—2)} (7
S

where s,, s, are singular values obtained from Eq. (6)
and u, is the coordinate of p,, p,, ..., p, along the first
principal direction according to the SVD. Parameter D, is
the variability along the first principal direction:

1 « T
Du=«/ _1j:](uj—u) u=7;ui (8)

1.2 MPS stationarity estimation of the training image

The multiple-point statistics describe the configuration
pattern of the image indicating the probability of particu-
lar multiple-point statistics occurrence. Before reconstruc-
ting the 3D pore structure, statistical information of the
2D training images must be properly represented with par-
ticular functions. The representation of high-order statisti-
cal information is one of the necessary issues. The MPDF
characterizes the frequency of a specific multiple-point
configuration. As porous media is usually considered as
two phases, there is a total of 16 (2*) different configura-
tions for a four-point configuration ( see Fig.2), 32 (2%)
for five-point configurations and so on.

s
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Fig.2 Possible combinations of two categories for a square
four-point configuration

Taking four-point configurations into account, the mul-
tiple-point density function is obtained by counting the
number of times that each configuration in Fig. 2 occurs
in an image, which means the probability of the configu-
rations in the image.

The MPS stationarity estimation method is based on the
multiple-point density function. The training image is al-
so divided into nine sub-regions as mentioned in section
1. 1. The MPDF is calculated over these sub-regions. The

MPDF of the whole training image is also computed as
the reference.

For each sub-region, we analyze the sum of the abso-
lute difference of the multiple-point density function be-
tween the sub-region and the whole training image. The
sum is defined as

n

A = Z FAOESAGHE (9)
where n is the number of configuration arrangement
events; f,(i) is the frequency corresponding to configura-
tion i in the whole training image; and f,(i,j) is the fre-
quency corresponding to configuration i in sub-region j.

The smaller the sum of absolute difference indicates a
better similarity between two multiple-point distributions.
The variability of the sums of absolute differences charac-
terizes the similarity between different sub-blocks in the
training image as follows (A is the mean value of parame-
ters A)):

1 < - - I «

D, =«/ YA -4 A=A (10)
n -1 =l n 4

Then MPS-stationarity score S, for the image is defined as

S,=1-D, (11)

2 Experimental Results and Discussion

In order to verify the effectiveness of the method for
3D reconstruction, the training images that have different
stationarity scores are used to generate 3D structures
through different reconstruction algorithms, such as the
simulated annealing (SA) and the multiple-point geology
statistics method. Four training images are randomly se-
lected from a serial of micro-CT images with the size of
128 x 128 x 128 and the resolution of 30 pum/pixel.
Meanwhile, the micro-CT images are tested as a reference
of the results.

Fig. 3 shows four different 2D image samples. The
scale stationarity score of sample 1 (see Fig.3(a)) is
0. 669 385 and that of sample _2 (see Fig.3(b)) is 0. 055
267, while the MPS stationarity scores are 0. 963 920 and
0. 889 441, respectively. Most training images with lar-
ger scores of scale stationarity have larger MPS stationari-
ty scores, and there are a few images which have larger
scores of scale stationarity but smaller MPS stationarity
scores. The scale stationarity scores of sample 3 ( see
Fig.3(c)) and sample 4 (see Fig.3(d)) are 0. 602 321
and 0. 015 143, respectively; while the MPS stationarity
scores are 0. 892 314 and 0. 943 563, respectively. These
images are used as training images for 3D reconstruction
employing different algorithms as mentioned in the previ-
ous section. By calculating the local percolation probabil-
ity and the two-point probability, we analyze and com-
pare the properties of the reconstructed 3D realizations in
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the following section.

Fig. 3  Training images with different stationarity scores.
(a) Sample _1; (b) Sample _2; (c) Sample _3; (d) Sample _4

2.1 Local percolation probability

The local percolation probability measures the connec-
tivity of measurement cells with a given local porosity @.
We define K(r, L) as a measurement cell that denotes the
cube centered at the lattice vector r with side-length
L"™ ™. The percolation characteristic function is defined as

1 K(r, L) percolates in « direction

L) =
Aur. L) {0 otherwise (12)

where A_(r, L) =1 represents that fluid can percolate
from one side to the other side of the measurement cell
along o direction. Then the local percolation probability
along « direction can be defined as

S A(r D8P - D) (r, L))
A(D, L) =

(13)
> 8D -d)(r, L))

where the § function means the range of @ and @ +d@ in

a measurement cell, and L is the side-length of the cell.

The distribution of the curves of the local percolation
probabilities in different directions characterizes the con-
nectivity and isotropy of the 3D pore structure qualitative-
ly. The curves will overlap when A (@, L) are similar in
the X, Y, Z directions, implying homogeneity, as the curves
will gather when the property of the porous media has the
trend to be isotropic. Meanwhile, faster increasing speeds of
the curves mean better connectivity of the structure.

Fig. 4 shows the local percolation probability curves of
the micro-CT images as a reference. Label “3” means the
fluid percolates along all the three directions (X, Y and Z)
while label “C” means the fluid percolates along any of the
three directions. Fig.5 and Fig. 6 present local percolation
probability curves of the 3D pore structures reconstructed
from sample _1 and sample _2 with two reconstruction meth-
ods, i.e., the SA algorithm and the MPS algorithm. Clear-

ly, the local percolation probability curves of the 3D pore
structures reconstructed from sample 1 imply better proper-
ties of isotropy and connectivity than those from sample _2.
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Fig.4 Local percolation probability for the micro-CT images

1.0

e e
o =
T T

=
-

Local percolation probability

Porosity
(a)
1.0 r ryﬁw&ﬂw
13 J,,‘
e /
- /
= 0.8 | 7
£ g
0.6} I
S /
g I! / ______ X
S 0.4} [ A —
: A
= A —
§0.2f / ——C
3 V'
0 et 1 J
0 0.4 0.6 0.8 1.0

Porosity
(b)
Fig.5 Local percolation probability of 3D pore structure re-
constructed from different samples by SA algorithm. (a) Sam-
ple_1; (b) Sample _2

Fig.7 and Fig. 8 show the local percolation probability
curves of 3D realizations reconstructed from sample 3
and sample _4 by two reconstruction methods. Sample _3
has a larger scale stationarity score but a smaller MPS sta-
tionarity score than sample 4. Results of Fig.7 and Fig.
8 show that the local percolation probability curves of 3D
pore structures reconstructed from sample _4 indicate bet-
ter properties of isotropy or connectivity than those from
sample 3, which means training images with a larger
MPS stationarity score is better for 3D reconstruction.
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Fig.6 Local percolation probability of 3D pore structure re-
constructed from different samples by MPS algorithm. (a) Sam-
ple_1; (b) Sample _2
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Fig.7 Local percolation probability of 3D pore structure re-

constructed from different samples by SA algorithm. (a) Sam-
ple _3; (b) Sample _4
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Fig.8 Local percolation probability of 3D pore structure re-

constructed from different samples by MPS algorithm. (a) Sam-
ple _3; (b) Sample _4

2.2 Statistic characteristics

Two-point probability describes the probability of two
pixels in the same phase occurring at a specific distance.
In Fig.9 and Fig. 10, Curves of the two-point probability
of the 3D structures reconstructed using the SA and MPS
reconstruction algorithms are compared with the two-point
probability of the real micro-CT images. Reconstructed
structures of Figs.3(a), (b), (c) and (d) are denoted as
0040, 0108, 0015 and 0105, respectively, according to
the serial number of the training images in real micro-CT
images. Curves of the two-point probability for these re-
constructed 3D pore structures are compared with those
from the realistic porous media. As shown in Fig. 9, it is
obvious that the two-point probability function curves of
sample _1 are closer to the curves acquired from the real
micro-CT images than those of sample 2. This confirms
that training images with a larger scale stationarity score
and a MPS stationarity score are better for 3D reconstruc-
tion. Fig. 10 shows the curves of sample _3 and sample _
4. Obviously, the two-point probability property of the
structures from sample 4 is more similar to the property
of the micro-CT image than that from sample 3. This re-
sult is consistent with the experimental results in section
2.1, which means that the MPS stationarity score can in-
dicate a better training image, while the scale stationarity
score may be invalid in a few cases.
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Fig.9 Two-point probability functions S(r) of the 3D pore
structure reconstructed from sample 1 and sample _2 with dif-
ferent methods. (a) SA algorithm; (b) MPS algorithm
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Fig.10 Two-point probability functions S(r) of the 3D recon-
structed structures from sample 3 and sample 4 with different
methods. (a) SA algorithm; (b) MPS algorithm

3 Conclusion

In this paper, a spatial information analysis is imple-
mented for the training image before 3D pore structure re-
construction of porous media. Multi-scale analysis and
principal component analysis are used to evaluate the
scale stationarity based on the texture feature. Further-
more, the absolute difference of the multiple-point densi-
ty function is applied to characterize the multi-point statis-
tics stationarity for the training image. Stationarity scores
obtained by the methods decide the better 2D training im-
age for the 3D reconstruction of the porous media. Two
different reconstruction algorithms are used to verify our
theory, with the real micro-CT images as reference. Ac-
cording to the obtained results, it is confirmed that train-
ing images with larger stationarity scores will lead to bet-
ter reconstruction results of porous media. Meanwhile, it
is noticed that better MPS stationarity performance usually
implies better 3D reconstruction results while the scale
stationarity method may be invalid in a few cases, which
is obvious since multiple point statistics actually contain
all the lower order statistics.
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