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Abstract: In a random-valued impulse noise corrupted image,
in order to remove impulse noise and, meanwhile, efficiently
preserve image edges and details, a novel two-phase detail-
preserving random-valued impulse noise removal algorithm is
proposed. At the noise detecting phase, an image statistic
called S-estimate based rank-ordered absolute difference ( S-
ROAD) is presented to distinguish image edge and detail
pixels from impulse noise pixels in a noise corrupted image.
By introducing S-estimate into ROAD  statistic, the
interference caused by the image edges and details in the
ROAD statistic is eliminated. With the S-ROAD statistic,
most of the noise pixels, including the noise at edges and
details, can be distinguished. At the noise pixels filtering
phase, a two-threshold iterative method is used to restore the
identified noise pixels and the estimate precision is improved;
thus, the image details can be efficiently preserved.
Experimental results show that the proposed method provides a
significant improvement over many existing filters in terms of
both subjective and objective evaluations.
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mpulse noise often corrupts an image seriously during

acquisition and transmission. Generally, there are two
types of impulse noise models: the fixed-valued impulse
noise model and the random-valued impulse noise model.
The gray-level value of the fixed-valued impulse noise is
either minimal or maximal, while the gray-level value of
the random-valued impulse noise is uniformly-distributed
between minimal and maximal'!. Comparatively, the
former is easier to restore. This paper mainly focuses on
the latter. The standard median (SM) filter is an efficient
random-valued impulse noise removal technique which is
widely used. However, as each pixel in the image is re-
placed by the median value in its neighborhood, the SM
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is prone to change lots of noise-free pixels and may dam-
age some important information in the image.

In order to overcome this problem, many median-based
filters have been proposed. The weight-based median fil-
ter and the switching-based median filter are two kinds of
main types which are simple and effective, e. g. the
weighted median (WM) filter'™, the center weighted me-
dian (CWM)"! filter, the modified switching median
(MSM ) filter', the adaptive switching median
(ASWM) filter™', the adaptive center weighted median
(ACWM) filter', the directional weighted median
(DWM) filter'”, the pixel-wise MAD filter'®, the selec-
tive weighted median (SAWM) filter™, and the contrast
enhancement-based ( CEF) filter'"”. However, these fil-
ters just simply use median values to restore the noisy
pixels, which may blur image details when the image is
highly corrupted.

The rank-ordered absolute difference statistics based tri-
lateral filter (ROAD-TRIF)""! and the rank-ordered loga-
rithmic difference edge-preserving regularization (ROLD-
EPR) filter'” are good schemes to solve this problem.
But improvement can still be made in these two areas: 1)
The ROAD or ROLD cannot distinguish noise pixels from
edges and details efficiently; 2) The EPR-based method
is very complex. Aiming at these drawbacks, we propose
an S-estimate''”’ based ROAD statistic to improve the ac-
curacy of noise detection, especially at edges and details.
In order to reduce the computational complexity and pre-
serve image details as much as possible, we introduce an
efficient two-threshold iterative method at the filtering
step. Finally, we give an efficient algorithm that com-
bines the S-ROAD and the two-threshold median filter.
Experimental results indicate that the proposed method
provides a significant improvement over many existing
impulse noise removal techniques.

1 Review of ROAD Statistic

The image statistic ROAD is proposed by Garnett et al.
in Ref. [11]. It provides a measurement to judge how
close a pixel value is to its » most similar neighbors. The
basic idea underlying this statistic is that the unwanted
impulses will vary greatly in intensity from most or all of
their neighboring pixels.

Let x, ; and y, ; be the pixel values at (i, j) in the
original image and the noisy image, respectively. The
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dynamic range of the image is [ L L If the noise

ratio is p, then

min ? max ] .

_ [x,; with probability 1 —p ()
Y157, , with probability p
where n, ; represents the gray-level value of the noisy pix-
el. Let (2, denote the set of coordinates in a local (2N +
1) x (2N +1) window centered at (0, 0), i.e.,
Qy={(s,0) | -N<s,t<N} (2)

Let W(i, j) be the local window and y(i, j) be the cen-
tral pixel in W(i, j). The pixel value is y, ;. U, denotes
a set whose elements are the pixels in the W(i, j) of the
noisy image y.

U, ={i+sj+0 [ Y(s.0ey) (3)

Define d, as the absolute differences between the gray-
level values y, ;. and y, ;, i.e.,

V(s,) e, (4)

Sort d, values in an increasing order, and let r, be the k-

dsz(yi,j) = ‘yi+x,j+t = Vij ‘

th smallest one among them, then define

m

= z ”k()’,-,j)

k=1

ROAD, (y,,) 2<m<(2N-1)" -2

(3)

According to Refs. [11 —12], we select a 3 x 3 size
window and let m =5 when the noise ratio is lower than
25% , and select a 5 x5 size window and let m =13 in
other cases. By combining the ROAD with a priori
threshold 7, the impulses can be detected. A pixel y, ; is
identified as noise if ROAD, (y, ) > T, and signal in oth-
er cases.

2 S-Estimate Based ROAD (S-ROAD) Statistic
2.1 Robust S-estimate of variance

The median of absolute deviation (MAD) is a well-

a)

Fig. 1

ance; (c) S-estimate of variance

2.2 S-ROAD statistic

With the ROAD, we can identify most of the impulse
noise except the impulses at or near the edges and the de-
tails in a noisy image, because edges and details in an

known statistic as the variance estimate. Chen et al.'
used the MAD for impulse noise suppression in the AC-
WM filter. Crnojevic et al. " also used the modification
of the MAD, the pixel-wise MAD, in the PWMAD fil-
ter. The MAD is a good estimate of variance, but it re-
quires the calculation of location estimate, so it is only
suitable when the underlying distribution is symmetric.
But in the image regions where edges are presented, the
signal can be hardly modeled by a symmetric distribution.
Therefore, we need a robust estimator being able to work
well both on symmetric and on asymmetric distributions.
From Ref. [13], the S-estimate is an estimator with such
a property. It is given as

S =med,{med, |7, -1, 1} (6)
where for each 7,, i =1, 2, ..., L, the inner median of
{1t -t j= 1,2, ..., L} is computed. This yields a

new sample of L elements, and their median gives the fi-
nal estimate S.

Let (2,, denote the set of coordinates in a (2M +1) x
(2M +1) window centered at (0, 0), i.e.,

0, ={(s,. 1) | ~M<s,, 1, <M} (7)

Finally, in a noisy image, the S-estimate S, (y,;) is
computed as

Sy(y, ) =med, {med, (|, ., =i .. 1)}
‘p_so ‘ + ‘ q-1, ‘ #0, V(so’ to) E'QM’ (pr 11) E'QM
(3)

The S-estimate can present a good estimate of the local
variance even in the highly corrupted noisy image. Fig. 1
shows the MAD estimate of variance and the S-estimate
of variance for the image “Lena” corrupted by 50% ran-
dom-valued impulse noise. The results show that the S-
estimate not only presents image variance very well but
also has a better anti-noise ability than the MAD.

(b) (e)

Variance estimate for 50% random-valued impulse noise corrupted image “Lena”. (a) Noisy image; (b) MAD estimate of vari-

image can cause some kinds of naturally large absolute
differences d,. If the edges and details are subtracted
from the ROAD, a more accurate impulse noise detector
can be generated. To this end, we propose the image sta-
tistic called the S-estimate based rank-ordered absolute
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difference (S-ROAD for short) .

The S-ROAD is an improved statistic from the ROAD
statistic. It is obtained by extracting the edges and details
in the ROAD utilizing the S-estimate. The whole proce-
dure can be described as extracting image edges and de-
tails by the S-estimate of variance first and utilizing the
ROAD statistic amplifying the differences between noisy
pixels and noise-free pixels afterwards.

d,, =|d; -aS,(d;’)| 1=2,3,4,... (9)
d;= |y, -median(y,, ,.) [ Y(s 1) e, (10)
&=y, (n

where [ is the number of iterations; « is a predefined pa-
rameter which is at interval (0, 1); d denotes the abso-
lute deviation image; d' is an absolute deviation image

\?EL

(g)

defined in Eq. (10), and d° is a primary image absolute
deviation image defined in Eq. (11). Then the S-ROAD
statistic for the pixel y, ; is defined as

S-ROAD,(y,,) =ROAD, (d;)) (12)

The iteration is used in our method. In each step, cer-
tain portions of edges and details are eliminated from the
absolute deviation image, while the noise remains. Fig.?2
presents the whole course of this method. In Figs.2(b) to
(g), three iteration steps for image “Lena” corrupted by
30% random-valued impulse noise are presented, and in
Figs.2(h) and (i), the ROAD and S-ROAD statistics for
the noise image are presented. Apparently, details fade
away while noise remains. This reduces the probability of
detecting image details as impulses.

(i)

Fig.2 Procedure of computing the S-ROAD statistic (M =5). (a) Noise image; (b) d'; (c) S,,(¥); (d) d*; (e) Sy, (d"); (f) d°; (g)

Sy (d*); (h) ROAD; (i) S-ROAD

3 Proposed Noise Filter

In terms of the S-ROAD, we can classify image pixels
in the noisy image into two parts: the outlier candidate set
and the outlier-free set. A flag image 5, where the outlier

and outlier-free are denoted as 1 and 0, respectively, is
generated.

1 S-ROAD,(y,) =T,

8(3i,) = {0 S-ROAD,(y,) <T, )
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where T is a threshold to identify the impulse. If the pix-
el y,; is identified as an impulse, it is replaced by
median( U; ). U;; is a subset of U, ; when the elements of
U, ; satisfy

| U,, - median(U, ) | <T, (14)

Generally, a noisy pixel (an impulse) is located near
one of the two ends''. So, we use Eq. (14) to extract
potential noise pixels to improve the accuracy of the noise
pixels restoration. To determine the value of threshold T,
used in Eq. (14), the influence of T, on filtering perform-
ance is studied. For this purpose, five grayscale images
(8-bit, 512 x512), “Lena”, “Boat”, “Goldhill”, “Pep-
per” and “Baboon” are selected as the test images. By al-
tering the value of the threshold 7, and using our filter to
restore these test images contaminated by 20% and 40%
impulsive noise, the average peak signal-to-noise ratio
(PSNR) of the filtered images for each noise ratio is
obtained. The results are shown in Fig. 3. From Fig. 3,
we find that the PSNR values are not very sensitive to the
values of T, ranging from 80 to 100. So we select T, =90
(a3 x 3 size window and a noise ratio lower than 25% )
and 7, =80 (a5 x5 size window and a noise ratio higher
than 25%). In a 8-bit gray image median (U’;;) =
median (U, ;) when T, =0 or T, =255.

2
PSNR = 10log,, 5> (15)

N S (r,; —x,) /(M,N,)

i=1 j=1
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Fig.3 Average PSNR values vs. threshold T, operated on five

512 x 512 images corrupted random-valued impulse noise with
densities of 20% and 40% . (a) 3 x3 size window; (b) 5 x5 size
window

M, N,

% %)

MAE =
M, N,

where M, and N, are the image dimensions, and r,; and
x, ; are the restored images and the ideal noise-free pixels
at position (i, j), respectively.

The algorithm steps are as follows:

1) Set u =0, P =y.

2) Compute the absolute deviation image d' in an itera-
tive manner (in this paper, /=3 t0 6).

3) In terms of the results obtained in Step 2), the S-
ROAD, (r") is generated (Eq. (12)).

4) If S-ROAD,, (r;;) > T,
median (U} ).

5) Stop the iteration until u is greater than u
maximum number of iterations.
and go to step 2).

The threshold T, is important in noise detection. In or-
der to find a suitable 7,, we select five test images with
different texture features which are corrupted by 30%,
40% , 50% and 60% noise to do some experiments. The
results are shown in Fig.4. From Fig.4, we choose T, =
90 when the noise ratio is higher than 40% . In other ca-
ses, we select T, =30.

(16)

replace r;; with

the
Otherwise set u = u + 1

max *
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Fig.4 Average PSNR values vs. threshold 7' operated on five

512 x 512 images corrupted random-valued impulse noise with
noise ratios of 30% to 60% . (a) 30% and 40%; (b) 50% and
60%

Before filtering, we should determine another parame-
ter o in Eq. (9). We test the restoration capability of our
method by setting the parameter « from 0.1 to 0.9 with
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increments of 0. 1. Six grayscale images (8-bit, 512 x
512), “Lena”, “Boat”, “Goldhill”, “Bridge”, “Pepper”
and “Baboon”, which are corrupted by 20% random val-
ued impulse noise, are selected as the test images. The
results are shown in Fig. 5. From the results, we find that
the best oo values are at intervals [0.4, 0.6]. For sim-
plicity, we select the median value 0. 5.

33.41

6
4
2
0
8
0.

1 1 1 1 1 1 L ]
10.20.304 0.50.60.70.80.9
o

Fig.5
512 x 512 images corrupted random-valued impulse noise with a
noise ratio of 20%

Average PSNR values vs. parameter o operated on six

4 Numerical Experiments

In this section, the proposed algorithm is evaluated and
compared with some other existing techniques. In our ex-
periments, a group of 512 x 512 gray-scale images cor-
rupted by random-valued impulse noise with various noise
ratios are used. For performance comparison, the ACWM
filter, the PWMAD filter, the ASWM filter, the DWM
filter, the SAWM filter, the ROAD-TRIF filter, the
ROLD-EPR filter and the CEF filter are simulated. The
filtering window size of these compared filters is tuned to
obtain the best restoration performance at various noise ra-
tios.

4.1 Restoration performance measurements

The restoration performances are measured by the wide-
ly used PSNR and the mean absolute error (MAE) (Eq.
(16)). The PSNR and MAE are given in Tab. 1. In the
table we choose five different images corrupted by ran-
dom-valued impulse with noise ratio of 30% . The results
show that the proposed method performs better than other
considered methods do for its larger PSNR values and
smaller MAE. Besides, the performances of our method
and other considered approaches for testing images “Pep-
per” and “Lena” in terms of the PSNR for random-valued
impulse noise with different noise ratios are shown in
Fig. 6. The curves also denote that our method performs
better than other approaches do.

4.2 Noise detection performance measurements

Here, we compare our method with the PWMAD fil-
ter, the ASWM fiter, the DWM filter, the ROAD-TRIF
filter, the ROLD-EPR filter and the CEF filter by the sum
of the rate of miss detection( H_.__) and false detection

miss

(H;,.) (SRMF). Tab.?2 lists the experimental results on
the image “Lena” corrupted by noise from 10% to 60% .
The results show that our method can distinguish more
noisy pixels with fewer mistakes.

SRMF Hmiss Hl’alse
=4+ ——
H H

all

(17)

all

where H_, is the number of all noise pixels in the image.

Tab.1 Comparison of restoration results in PSNR and MAE
for images corrupted with 30% random-valued impulse noise
Filter Method Lena  Baboon Goldhill Boat  Pepper
PSNR 31.75 22.80 29.93 29.03 30.72
ACWM
MAE 2.03 8.68 2.96 2.90 2.46
PSNR 30.02 20.75 28.44 27.58 29.03
PWMAD
MAE 2.74 8.12 3.24 3.41 2.93
PSNR 32.13 22.62 30.22 29.39 31.39
ASWM
MAE 1.98 8.64 2.80 2.75 2.09
PSNR 32.09 22.57 30.14 29.23 31.69
DWM
MAE 2.31 10.26  3.30 3.37 2.40
PSNR  29.21 20.45 26.76 28.94 28.74
SAWM
MAE 2.42 10.33 3.73 3.79 3.01
CEF PSNR 32.35 22.84 30.31 29.52 32.08
MAE 2.16 9.37 3.05 3.08 2.22
PSNR  32.22 22.93 30.25 29.68 32.45
ROAD-TRIF
MAE 2.09 9.45 2.94 3.06 2.52
PSNR 33.15 23.01 30.96 30.22 32.69
ROLD-EPR
MAE 1.75 7.43 2.79 2.75 2.16
PSNR 33.70 23.85 31.68 31.08 33.64
Proposed
MAE 1.61 6.30 2.33 2.20 1.62
40
35]
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§ — ASWM
6 oael.  — DWM
£25 - ACWM
- CEF
20l = ROAD-TRIF
-+ ROLD-FPR
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15 L L 1 L L |
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10 20 30 40 50 60 70
Noise ratio /%
(b)
Fig.6 Performance comparison of different approaches for re-
stored images corrupted by random-valued impulse noise from
10% to 70% . (a) Lena; (b) Peppers
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Tab.2 Comparison of noise detector in SRMF with various

ratios of impulse noise %
Filters Noise ratio

10 20 30 40 50 60
PWMAD 20.3 16.1 15.2 14.1 12.8 11.1
ASWM 15.8 14.5 13.1 12.3 11.0 10.1
DWM 21.5 18.3 16.5 15.4 14.3 13.5
ROAD-TRIF 17.1 15.7 14.6 13.4 12.2 11.0
CEF 18.8 16.9 15.4 14.5 13.7 12.9
ROLD-EPR  16.1 14.6 12.8 11.3 10.6 9.8
Proposed 15.4 12.7 11.5 10.6 9.8 9.1

4.3 Visual performances

As the final illustration, we display the “Lena” image
with 70% random-valued impulse noise restored by vari-
ous methods in Fig. 7. Compared with other filters, the

proposed method exhibits better visual performances.
5 Conclusion

We propose a detail-preserving random-valued impulse
noise removing algorithm. The S-ROAD statistic is used
as a noise detector. With the S-ROAD, we can distin-
guish more noisy pixels with fewer mistakes, even at ed-
ges and details. In order to reduce the calculation com-
plexity, and, meanwhile, preserve image details as much
as possible, we propose an efficient two-threshold itera-
tive method at the filtering phase. Experimental results
indicate that the proposed method provides a significant
improvement over many existing impulse noise removal
techniques both in a subjective aspect and an objective as-
pect.

Fig.7 Results of different filters. (a)70% noise corrupted image “Lena”; (b) ACWM filter; (c) PWMAD filter; (d) ASWM filter; (e)
DWM filter; (f) SAWM filter; (g) CEF filter; (h) ROAD-TRIF; (i) Proposed method

References

[1] Ibrahim H, Kong N S P. Simple adaptive median filter
for the removal of impulse noise from highly corrupted
images [J]. IEEE Transactions on Consumer Electronics,

2008, 54(4): 1920 —1927.

[2] Brownrigg D R K. The weighted median filter [J]. Com-
munications of the ACM, 1984, 27(8): 807 —818.

[3] Ko S J, Lee Y H. Center weighted median filters and
their applications to image enhancement [J]. IEEE Trans-



444

Zhu Zhu, Wang Qing, Xiao Yanchang, Wan Xueyin, and Zhang Xiaoguo

actions on Circuits and Systems, 1991, 38(9): 984 —
993.

[4] Kang C C, Wang W J. Modified switching median filter

with one more noise detector for impulse noise removal
[J]. AEU-International Journal of Electronics and Com-
munications, 2009, 63(11): 998 —1004.

[5] Akkoul S, Lédée R, Leconge R, et al. A new adaptive

switching median filter [J]. [EEE Signal Processing Let-
ters, 2010, 17(6): 587 —590.

[10]

an filter [J]. Optic Engineering, 2008, 47(3): 037001 —
037006.

Ghanekar U, Singh A K, Pandey R. The contrast en-
hancement-based filter for removal of random valued im-
pulse noise [J]. IEEE Signal Processing Letters, 2010,
17(1): 47 —50.

[11] Garnett R, Huegerich T, Chui C, et al. A universal noise

removal algorithm with an impulse detector [J]. IEEE
Transactions on Image Processing, 2005, 14(11):1747 —

1754.

[12] Dong Y, Chan R H, Xu S. A detection statistic for ran-
dom-valued impulse noise [J]. IEEE Transactions on Im-
age Processing, 2007 16(4): 1112 —1120.

[13] Rousseeuw P J, Croux C. Alternatives to the median ab-

[6] Chen T, Wu H R. Adaptive impulse detection using cen-
ter-weighted median filters[J]. [EEE Signal Processing
Letters, 2001, 8(1):1-3.

[7] Dong Y, Xu S. A new directional weighted median filter
for removal of random-valued impulse noise [J]. [EEE
Signal Processing Letters, 2007, 14(3): 193 —196.

[8] Crnojevic V, Senk V, Trpovski Z. Advanced impulse de-
tection based on pixel-wise MAD [J]. IEEE Signal Pro-
cessing Letters, 2004, 11(7): 589 —592.

[9] Jin L, Xiong C, Li D. Selective adaptive weighted medi-

solute deviation [J]. Journal of American Statistical As-
sociation, 1993, 88(424):1273 —1283.

[14] Astola J, Kuosmanen P. Fundamentals of nonlinear digit-
al filtering [ M]. Boca Raton Florida: CRC Press, 1997.

EF S-ROAD it 2 MM RIPFEH B R F TR K E %
k w2 2 & KE8 7EEF k0"

(" A RENEASEE TEER, E7 210096)
C ABXFEFMBLE, 0 215123)

WRE . ALK TR E FHRGBEG P, AT XHRBE TR RE AR R BB % 5@y =
BT — AP AT BB L AR A R AR A R ROk k. AR R B AR B, AT AT B AR i G et AR E AR
DAk B AR R 50 P, 380 T — AL T S-A¥ 3+ 89 4637 & £ %31 & (S-ROAD). i it 5] N S-4¥ i+ 3|
ROAD %t %, ik T ROAD 4% F vy B A% 12 % e 2 0 A7 R 09 T 2R, A1 A S-ROAD %ot 2, B AR F 49 X 3¢
Sk R, O T BB G A n T A0k B R AT AR 4 k. BARIE R B, ORI T W
ALk AR 7 s 3T AR 09 P AR A AL, 423 T xRk AL R 9B, A A 200 T BAR M . it
& AL FFAE B L BIKAEI-AE , LI RAKI T Sk k TOA R % 5 k.

KRSt BB E; A Am; RibRE

RE45 25 TP391





