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Abstract: A novel algorithm for image edge detection is

presented. This algorithm combines the nonsubsampled
contourlet transform and the mathematical morphology. First,
the source image is decomposed by the nonsubsampled
contourlet transform into multi-scale and multi-directional sub-
bands.

frequency sub-bands are respectively extracted by the dual-

Then the edges in the high-frequency and low-

threshold modulus maxima method and the mathematical
morphology operator. Finally, the edges from the high-
frequency and low-frequency sub-bands are integrated to the
edges of the source image, which are refined, and isolated
points are excluded to achieve the edges of the source image.
The simulation results show that the proposed algorithm can
effectively eliminate pseudo-edges and
overcome the adverse effects caused by uneven illumination to

suppress noise,
a certain extent. Compared with the traditional methods such
as LoG, Sobel, and Canny operators and the modulus maxima
algorithm, the proposed method can maintain sufficient
positioning accuracy and edge details, and it can also make an
improvement in the completeness, smoothness and clearness of
the outline.
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modulus maxima;

mage edge detection is one of the most important

steps in image processing, analysis and pattern rec-
ognition systems. Its importance arises from the fact that
the edges often provide an indication of the physical ex-
tent of an object within an image. The sufficient informa-
tion of a characteristic feature is provided by the detection
of edges because the size of the image data is reduced to a
size that is more suitable for image analysis. The per-
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formance of the later stages to identify objects depends on
the success of the edge characterization step. In general,
the following goals must be considered during the process
of detecting edges: An edge should not be missed or non-
edge should not be marked as an edge, and the edge
should be located at correct position.

Early image edge detection methods employed local op-
erators to approximately compute the first derivative of
the gray-level gradient of an image in the spatial domain.
The locations of the local maxima of the first derivative
are considered to be edge points. Classical image edge
detection operators are examples of the gradient-based im-
age edge detector, such as the LOG operator, the Sobel
operator, the Canny operator, etc. Since they are very
sensitive to noise, classical image edge detection opera-
tors are not practical in real image processing. Recently,
there have been many previous works on detecting the
edges of the image which is corrupted by noise by using
different methods,
od''"™, the mathematical morphological method'

such as the wavelet transform meth-
1 and
the modulus maximum method ', etc.

The contourlet transform ( CT) was developed as a
true two-dimensional representation for images that can
efficiently capture the intrinsic geometrical structure of
pictorial information'”’. Because of the employment of
the directional filter banks ( DFB), the CT can provide
a much more detailed representation of natural images
with
However, shift-variance is an important weakness of

CT. So, the NSCT is developed and some applications
d "

abundant textural information than wavelets.

are studie

If improper fixed thresholds were selected, pseudo-ed-
ges were detected in the traditional NSCT. The dual-
threshold method was employed to avoid this question and
it was proved to be effective """, There is much edge in-
formation in the low-frequency sub-band, which can be
detected by a mathematical morphology operator.

This article describes the theory of nonsubsampled con-
tourlet transform and mathematical morphology, and their
applications in image edge detection. Then, a new edge
detection algorithm is produced by the fusion of the two
methods. Finally, MATLAB simulations are carried out
to verify the theoretical analysis and the correctness of the
new algorithm.



446

He Kunxian, Wang Qing, Xiao Yanchang, and Wang Xiaobing

1 Nonsubsampled Contourlet Transform

NSCT is a flexible multi-scale, multi-directional, and
shift-invariant image decomposition method. An original
image can be decomposed into a low-frequency sub-band
and high-frequency sub-bands with this method. The
high-frequency sub-band is decomposed into some direc-
tional sub-bands. Repeating the above operation for the
low-frequency sub-band, multi-scale and multi-directional
image decompositions can be achieved.

Fig. 1 (a) displays an overview of the proposed NSCT.
The structure consists of a bank of filters that splits the
two-dimensional frequency plane in the sub-bands illustra-
ted in Fig. 1 (b). The proposed transform can thus be di-
vided into two shift-invariant parts: 1) a nonsubsampled
pyramid ( NSP) structure that ensures the multi-scale
property and 2) a nonsubsampled DFB (NSDFB) struc-
ture that gives directionality.
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Fig.1 Nonsubsampled contourlet transform. (a) NSFB structure
that implements the NSCT; (b) Idealized frequency partitioning obtained
by the proposed structure

1.1 Nonsubsampled pyramid (NSP)

The multi-scale property of the NSCT is obtained from
a shift-invariant filtering structure that achieves a sub-band
decomposition similar to that of the Laplacian pyramid.
This is achieved by using two-channel nonsubsampled 2-D
filter banks. Fig.?2 illustrates the proposed nonsubsampled
pyramid (NSP) decomposition with three stages.

To meet the perfect reconstruction, the NSP provided
by the filters needs to satisfy the Bezout identity:

Hy(2)G,(z) +H (2)G,(2) =1

where H(z) is a low-pass decomposition filter; H,(z) is
a high-pass decomposition filter; G,(z) is a low-pass re-
construction filter; G, (z) is a high-pass reconstruction
filter.

At the core of the proposed NSCT structure is the 2-D
two-channel NSFB. As shown in Fig. 3, the pyramid NS-
FB is needed to construct the NSCT. Through this set of
filters, the image is divided into a low-frequency sub-
band and high-frequency sub-bands. The multi-scale im-
age can be achieved by iterating the filtered low-frequen-
cy sub-band.
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Fig.2 2-D multi-resolution expansion. (a) Three-stage pyramid
decomposition; (b) Sub-bands on the 2-D frequency plane
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1.2 Nonsubsampled directional filter bank (NSDFB)

A shift-invariant directional expansion is obtained by a
NSDFB. The NSDFB is constructed by eliminating the
down-samplers and up-samplers in the DFB. This is done
by switching off the down-samplers/up-samplers in each
two-channel filter bank in the DFB tree structure and up-
sampling the filters accordingly. Fig. 4 illustrates a four-
channel decomposition.
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Fig. 4 Four-channel nonsubsampled directional filter bank con-

structed with two-channel fan filter banks. (a) Filtering structure;
(b) Corresponding frequency decomposition

2 Detecting Edges in High-Frequency Sub-Bands
2.1 Modulus maxima algorithm

The modulus maxima algorithm is used to process the
high-frequency sub-bands'. Fig. 5 illustrates eight direc-
tions in the sub-band decomposed by the NSDFB, and
eight directions are equivalent to the gradient direction of
the arng(,v’Z, directional edge at each point C_;l,)c(n) of the
sub-band. The local maxima value can be determined by
comparing the modulus values of two adjacent elements in
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the corresponding equivalent gradient direction arg( grad
C) of mod [C},(n)] and argC;)(n) as follows:
mod[ C},(n,, n,)] =
% mod[ C}\(n,, n,)] <
% mod[C/(.yl,)((n, -r,(n),n, —r(n,))]
07 mod[C}\(n,, n,)] <
% mod[ C)(n, —r,(n,),n, = r,(n,))1
Ledod[ €} (n,, 1) 1
where r(n,) and r(n,) represent, respectively, the hori-
zontal and vertical coordinates offset obtained by compa-
ring C},(n) with n in the direction of arg (gradC}}).

\12-5° /67,5"
]
3

(2)

others

157.5° 22.5°
\ 2 1 /
4 0
-157.5° -22.5°
5 6 7 ™~

—112.50/ _67.5° \

Fig.5 Equivalent gradient directions in directional sub-band

2.2 Detecting high-frequency edge with dual-thresh-
old method

According to Ref. [6], high-frequency sub-bands are
processed by thresholds 7, and 7,(7, = ar,; « is the scale
factor; 7, is the low threshold and 7, is the high thresh-
old. ), respectively, and corresponding edge matrices T,
and T, are achieved.

The specific steps are as follows:

1) When scanning in the matrix T,, if a non-zero pixel
P is encountered, the contour is tracked from the starting
point P to the end point Q of the contour.

2) When scanning in the eight neighborhoods of the
reference point Q in the matrix T,, if a non-zero pixel
R is encountered, R is included to T, as an edge point
of the contour in the matrix T,. Return to step 1 from
the point R until this scanning cannot be continued in
T and T,.

3) The contour is marked to be accessed after the con-
tour that contains the point P is linked in the two matri-
ces, turn back to step 1 to find the next contour. The op-
eration from step 1 to step 3 is repeated until a new con-
tour cannot be found. When an isolated non-zero point in
the search process is encountered, it is set to zero.

3 Detecting Edges in Low-Frequency Sub-Band

The mathematical morphology is composed by a series
of morphological algebraic arithmetic operators. The bas-
ic morphological operations, namely, erosion, dilation,
opening, and closing etc. are used for detecting, modif-

ying, and manipulating the features presented in the im-
age based on their shapes. The shapes and the sizes of the
structural elements( SE) play crucial roles in such a type
of processing and are, therefore, chosen according to the
needs and purposes of the associated application.

Next, some basic mathematical morphology operators
of gray-scale images are introduced.

In the two-dimensional Euclidean space Z*, let F(x, y)
denote a gray-scale two-dimensional image, and B denote
SE. The dilation of a gray-scale image F(x, y) by a gray-
scale SE B(s, t) is denoted as

(F®B)(x,y) =max{F(x-s,y-t) +B(s, )} (3)

The erosion of a gray-scale image F(x, y) by a gray-scale
SE B(s, t) is denoted as

(FOB)(x,y) =min{F(x+s,y+1t) +B(s, 1)} (4)

The opening and closing of a gray-scale image F(x, y) by
gray-scale SE B(s, t) are denoted, respectively, as

F-B=(FOB)®B (5)
F-B=(FOB)OB (6)

The edge of image F(x, y), E,(F), is defined as the
difference set of the dilation domain of F(x, y) and the
domain of F(x, y). This is also known as the dilation res-
idue edge detector:

E,(F) =(F®B) - F (7)

Accordingly, the edge of image F(x, y), which is de-
noted by E (F), can also be defined as the difference
set of the domain of F(x, y) and the erosion domain of
F(x, y). This is also known as the erosion residue edge
detector:

E(F) =F-(FOB) (8)

The dilation and erosion are often used to compute the
morphological gradient E(F) of image F(x, y), which is
expressed as

E(F) =(F®B) - (FOB) (9)

The morphological gradient highlights a sharp gray-lev-
el transition in the input image, and therefore, it is often
used as an edge detector.

In this paper, several kinds of SEs are chosen, and the
direction angles of all the line SEs are 0°, 45°, 90°,
135° in the 5 x 5 square window. And other SEs are
shown as follows:
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where “1” denotes the components of SE.
4 The Algorithm and Implementation Steps

The specific algorithm is described as follows:

1) The image is decomposed into two parts of the
low-frequency and high-frequency images using the
NSCT.

2) The high-frequency edges of the image are detected
by the modulus maxima algorithm. First, the low-fre-
quency coefficients are set to zero, and Cj(."i remain un-
changed. And then the modulus maxima algorithm is
used to detect the edges of the high-frequency sub-bands
in each scale, and the dual-threshold method compensates
for the link to obtain the edge matrix. Finally, the high-
frequency edge of the image is achieved by the inverse
NSCT.

3) The low-frequency edges of the image are detected
by the mathematical morphology. A mathematical mor-
phology operator is used to detect the edges of the low-
frequency sub-band, and then the low-frequency edge of
the image is achieved.

4) The high-frequency and low-frequency edge images
are fused and refined. The effective edge image can be
received by adding high-frequency to low-frequency due
to the shift-invariance of the NSCT. Finally, the image is
refined into a single pixel edge image and isolated points
are excluded.

5 Experimental Results and Analysis

In the experiment, the source images (aerial and Bar-
bara) are decomposed with three stages by dmaxflat NS-
DFB and 9-7 NSP of the proposed algorithm with Matlab
2007b in this paper, and then eight directions are decom-
posed in each high-frequency sub-band. For the aerial im-
age, the low-threshold is set to 20 in the dual-threshold
method, and then the high-frequency is 1. 8 times the
low-threshold.

Fig. 6 illustrates six images. Fig. 6(a) is the original
aerial image. Figs. 6(b) to (d) are the edge images de-
tected by the LoG operator, the Sobel operator, and the
Canny operator, respectively. Fig.6(e) is the edge image
detected by the method proposed in Ref. [10], and Fig. 6
(f) is the edge image detected by the method proposed in
this paper. Tab. 1 shows the experimental results of the
aerial image.

Fig. 7 illustrates six images. Fig.7(a) is the original
Barbara image. Figs. 7(b) to (d) are the edge images de-
tected by the LoG operator, the Sobel operator, and the
Canny operator, respectively. Fig.7(e) is the edge image
detected by the method proposed in Ref. [10], and Fig. 7(f)
is the edge image detected by the method proposed in this
paper. Tab.2 shows the experimental results of the Bar-
bara image.

The simulation results (see Fig. 6(f) and Fig. 7(f))

show that the proposed algorithm can detect the accurate
positioning details of the edges, clear texture, complete
and coherent outlines and overcome the adverse effects
caused by uneven illumination to a certain extent. Better
visual effects can be achieved.

(b)

Fig. 6

Edge detection results of aerial image. (a) Origin;
(b) LoG operator; (c) Sobel operator; (d) Canny operator; (e) Ref.
[10]; (f) This paper

Tab.1 Experimental results of aerial image

Index OII;(r)zior oigrl:::)r ocp:?;zr Ref. [10] This paper
Number 31983 32122 35 370 42 468 79 895
Continuity  General Poor Better Good Better
Accuracy  General Good General Better Better
Smoothness ~ Poor Good Good Good Better
Time/s 0. 61 0.32 1.25 547 560

From the results of several algorithms in the aerial
image, the LoG operator can detect lots of edge points,
but there are many false edges and noise points (see Fig.
6(b)); at the same time, it is almost the worst one of
several algorithms from the visual effects. The edges
detected by the Sobel operator are smooth and their posi-
tioning is accurate, but there is some loss in the details
and some fracture in the outlines. The Canny operator
can obtain good detection results in the outline, but many
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details cannot be detected. The algorithm proposed in
Ref. [ 10] can detect the accurate details of the edge,
complete and coherent outlines. The algorithm proposed
in this paper can effectively suppress noise, eliminate
pseudo-edges, and detect clear, complete and coherent
outlines.

o [l

2 r /. 3
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Fig.7 Edge detection results of Barbara image. (a) Origin;
(b) LoG operator; (c) Sobel operator; (d) Canny operator; (e) Ref.
[10]; (f) This paper

Tab.2 Experimental results of Barbara image

Index olie(r)eior osc(:r]z(l)r o(;:?aizr Ref. [10]This paper
Number 35214 14 869 19 760 24 695 39 778
Continuity Poor General Better Good Good
Accuracy  General Good General Better Better
Smoothness Poor Good Better Good Good
Time/s 0.51 0.30 1. 10 491 525

The robustness of the new algorithm is verified by the
simulation results in the Barbara image. Furthermore, the
new algorithm can efficiently detect more details in the
area of uneven illumination, and work better for the im-
age with regular structures.

6 Conclusion

The novel algorithm proposed in this paper combines
the NSCT and mathematical morphology. The NSCT can
effectively express the image with multi-scale and multi-
directional decomposition and translation invariance. The
mathematical morphology can extract abundant structural
information of the image content. The new fused method
not only achieves accurate positioning, but also suppres-
ses noise, eliminates pseudo-edges and overcomes the ad-
verse effects caused by uneven illumination to a certain
extent. Furthermore, this method makes preparation for
succeeding image processing.
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