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Abstract: This paper investigates the functionally graded
coating bonded to an elastic strip with a crack under thermal-
mechanical loading. Considering some new boundary
conditions, it is assumed that the temperature drop across the
crack surface is the result of the thermal conductivity index
which controls heat conduction through the crack region. By
the Fourier transforms, the thermal-elastic mixed boundary
value problems are reduced to a system of singular integral
equations which can be approximately solved by applying the
Chebyshev polynomials. The numerical computation methods
for the temperature, the displacement field and the thermal
stress intensity factors ( TSIFs) are presented. The normal
temperature distributions ( NTD) with different parameters
along the crack surface are analyzed by numerical examples.
The influence of the crack position and the thermal-elastic non-
homogeneous parameters on the TSIFs of modes [ and II at the
crack tip is presented. Results show that the variation of the
thickness of the graded coating has a significant effect on the
temperature jump across the crack surfaces when keeping the
thickness of the substrate constant, and the thickness of
functionally graded material (FGM) coating has a significant
effect on the crack in the substrate. The results can be
expected to be used for the purpose of gaining better
understanding of the thermal-mechanical behavior of graded
coatings.
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The functionally graded materials (FGM) have been
introduced in coating designs as an alternative to the
conventional coating because such materials can reduce
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the magnitude of residual thermal stresses and increase the
bonding strength. Many investigators studied the fracture
behavior of the FGM to optimize the design of FGM com-
ponents' ™. In recent years, Zhou et al.'’ studied the
partially insulated interface crack between a graded ortho-
tropic coating and a homogeneous orthotropic substrate

1. " obtained the thermal stress

under heat flux. Ding et a
intensity factors for the interface crack in a functionally
graded layered structure under the thermal loading in
2011.

However, little attention has been paid to an elastic
substrate strip with a partially insulated crack under ther-
mal-mechanical loading. It is vital that an elastic strip is
weakened by a crack withstanding high thermal loads and
the thermal loads is resisted by the bonded FGM coating.
In this paper, the crack in the elastic substrate strip with
the FGM coating under thermal-mechanical loading is in-
vestigated. The graded coating is assumed to be perfectly
bonded to the homogeneous substrate strip. The coating/
substrate system is subjected to mechanical loads and ther-
mal loads. It is assumed that all the material properties
are some exponential functions of y. By using the Fourier
transforms, the problem is reduced to a singular integral
equation. The equations are solved numerically and the
stress intensity factor versus time for various material con-
stants is calculated. The problem is solved under the as-
sumption of generalized plane stress conditions.

1 Statement of the Problem

The geometry of the problem is shown in the Fig. 1.
The graded coating of thickness A, is bonded to a homog-
enous strip with thickness A, + h,. The substrate strip
contains a partially insulated crack of length 2¢ along the
x-axis and is subjected to both the thermal loading Q, and
the mechanical loading w, (x) and w,(x). The thermal-
mechanical properties are modeled as follows:

k(y) = koyexp(8(y —h,))
u(y) =poexp(B(y = h,)) (1
a(y) = a,exp(y(y —1,))

where k,, u, and o, are the heat conductivity, the elastic-
ity modulus and the thermal expansion coefficient in the
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substrate, respectively; §, B, y are the graded parameters
controlling the variation of the heat conductivity, the
elasticity modulus and the thermal expansion coefficient
in the FGM coating, respectively.
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Fig.1 Geometry of the problem
Let T,(j=1,2,3) be the temperature; the subscripts j
=1, 2,3 refer to three regions. The heat equations can be
written as

2 T,
VT, + E=O h,<y<h, +h,

VT, =0 0<y<h, 2
VT, =0 -h,<y<0
The thermal boundary conditions are given as
aT,
k—'=0, y=h,+h, |x] <+
ay
aT (3)
3
kOTyZ—QO yZ—hl, X‘<+Oo
T, (x,07) 0T, (x,07)
-k 2ay = -k 38y =RQ, ‘X‘SC
(4)
. T (x,h)) oT,(x,h,)
T,(x,h)) =T,(x,h,), 1 ay 2o =2 ay (5)
. o 9T(x,07)  9Ty(x,07)
T(x07) =Ty(x,07), S22
[x] >ec (6)

Eq. (4) describes the partial insulation of the crack sur-
faces. In this case, we assume that the crack allows some
heat flux which is only a certain percentage of the flux
0Q,. 0, is the perfect conduction case. R is the thermal
conductivity index.

The thermal-elastic equations in the graded coating strip
are given by

(DU (oLl 5 O 1Bk -y
ax’ ay> oxdy dy
Jv oT
-1)E =40 % 7
Blx )ax aax 7
v o’y o u av
-D)—=+(k+1)=—5+2 + +1)—+
(x )ax2 (k )ay2 axay Bk )ay

T
3(3—K>al—4a[(ﬁ+y)T+‘;7] (8)

ax

The equations in the strip are

azuj azu, azvj a7,
(k+1) 8x2 +(k-1) 8y2 +28xay=4a0§ 9)
2 2 2
P L S O A A R ICE AT
ax’ ay’ 9x9y ay

The related mechanical boundary conditions are given
by

T (%,07) =75 (x,07) =w,(x)

. X x| <c (11)
Ty (1,07) =0, (1,07 =)
T,(%y) =0,(x,y) =0 y=h, +h,, x| <+
(12)
T (6.Y) =05 (x,9) =0 y=-h, |x| <+
(13)
2 (x,07) =7 5 (x,07) =0
oo +) oo ,) y=0, | x| >c} (14)
a-,vy(Z)(x’O ):0'”,(3)()6,0 )
w,(x,0") =u,(x,07) =0
2( +) 3( _) y:O, x>C} (15)
VZ(X,O ):V3(x’0 )

T-".V(x’ h; ) = Txy(z) (‘x’ hZ_ ) i O-_Vy(‘x’ h2+ ) = a-yy(Z) (x’ hz_)

(16)
u(x, ) =u,(x,hy ), v(x,h,) =v,(x,h, ) (17)

where the subscripts 2, 3 refer to different regions. We
define the dimensionless quantities as

L on B U h 9h s h
(%, 3, hys hyy hy) :M
Ty -t ) (18)
(1,,7,,T;) = ok,
(Tos O s T s Ty s Tty Tonisy) =
(T2 O Tos Tyt Ty > T i) .
-y Qpeyc/ 'k, J=2,3 (19)
o U, v, u, Vv,
(a2, v, u;, v;) =% j=2.3
" - Qya,c/k,
(S’B"?) 2(6,B,‘y)c (20)

For simplicity in what follows, the bar appearing with
the dimensionless quantities is omitted.

2 Heat Conduction

The dimensionless temperature can be expressed as

(T, (x,9), T,(x, ), Ty(x,y)) =(T,(y), T,,(¥), Ty, (y)) +
(le(x,y)’Tzz(x,)’)’ T_u(x’)’)) (21)

And it can be easily obtained that
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T, (y) = (%“'hz) _]Eeia(yihl) h,<y<h, +h,
T, (y) =y O<y<h,
Ty (y) =y -h, <y<0

(22)

We introduce the Fourier integral transforms as fol-
lows:

Fuy = [ fxme™ar
| _ (23)
fxy) =5 Fdyeaa

The solutions to T),(x,y), T,(x,y), T;,(x,y) can be
expressed as

1 i y ix,
T,(x,y) = 2—17] [A,(A)e' +A,(A)e]e™dr  (24)

Ty(x,y) = if_w [A, (De™ +A4,(1)e"]e™dr

j=23 (25)
where A, , :%( -6+ /6 +417).
We introduce the following density function:
() = T(x,0) ~T(x,07)] =
(2 - ax ’ ) -
J . _
67[ Tzz(-xao ) —T32(X,0 )] (26)
and it follows that
+1
f o(ndt =0, (x) =0 x| =1 (@7
-1

The unknown functions A, (A) (k=1,2, ...,6) can be
given by the boundary conditions.
We obtain the following integral equation in which the
unknown function is @(x).
LD knear)=R-1 (28)
N x’ = -
T\l — X ¢
where k(x, t) is the known function.

. 4 . .
The equation can be solved™, and its solution can be
expressed as

1 =

o(1) = ———3% aT(1
V1 =1 =

where T(1) is the first kind Chebyshev polynomials; a; is

the constant to be determined. A system of linear algebra-

ic equations can be obtained by using the Gauss-Cheby-

(29)

shev formula.

S aU_(x) + Y ak(x) =R-1 (x| <1 (30
j=1 j=1

where U,_, (x) is the second kind Chebyshev polynomi-

als, and k;(x) is an improper integral.
The following equation can be solved by a system of
algebraic equations (see Ref. [11]).

- jlmw )
N sm( N
N +1 I
EEATL S L .k.( ) “R-1
,Zfafsin( I ) ,-Z{a” N+1
N +1
j,l=1,2,...,N (31)
3 Displacement Field
From Egs. (7) to (10), we can obtain that
u(x,y) = LJM ( i C(N)e™)e™da +
’ 2m) . k=1 g
ifm(r (A ))e“d)\ (32)
2’1T . A >y

1 +

v(x,y) = 27fn'J: ( > C.(M) S, (A)e™)e™dr +
1 e ixA
o] (T Jean (33)

where C,(A)(k=1,2,3,4) is to be determined,; Tﬂ()\,
¥), S, (A) and T,(A,y) are some known functions; and
m(k=1,2,3,4) is the root of the following equation:

m' +28m’ +(B° =20")m’ =28X"m + A’ ()\2 +L§3+_KK) ) =

(34)
The stresses for the coating are given as
0'”. 1 +e ¢ my
i = el [T asane
Ty(A,Y) ] e dr + Fe” + F e ™ (35)
= T T ansaue + 1,0 Je
&Py~ 20l . e k 3k ALAS
(36)

where S, (1), S, (A), Fs, F, To(A,y) and T,(A,y)
are some known functions.

Applying the Fourier transforms to Egs. (7) to (10),
we can obtain the stresses in the substrate.

1= .
B ﬂf, [(F,;(Ay) + Fo(A)A, e Iy

Ty
(Fa(Ay) + F (DA™ +
Faoylear - Loy j=2.3 (37)
K —
1 - =l Aly
Tow = Z—ﬂf_x[(Fﬂ(,.)()t,y) +Fy (M)A, e +
(Fa, (A, ) + Fu(DA)e™ +
Fs(A)yle™da ji=2,3 (38)
where Fel(j)’ Fd(j)’ Fﬂ(/)’ Fﬂ(j)’ Fo, F,, Fgs, Fﬂ7 Ff4,
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F are some known functions. C,, (A)(k=1,2,3,4)
can be computed by the boundary conditions. We now in-
troduce the density functions that satisfy the following
single-value conditions:

+1

f,l‘o-f(t)d’ =0, g0 =0 [x[=1;j=1.2

(39)

Applying the boundary conditions, we obtain the follow-
ing system of integral equations:

Jj [ (tiix + K, (x, l))%(l) + K, (x, t)¢2(t)] = T, (X)
(40)

Jj [ (tiix + Ky (x, t))¢2(t) + K, (x, t)gol(t)] = mw,(X)
(41)

where K(x, 1 (i=1, 2; j=1,2) is the Fredholm kernel,
and w,(x), w,(x) contain w,(x), w,(x).
The integral equations are solved by

1< L5
1([) = — b/];(t)’ 2(t) Ry — CJT;(t)
® m; : ¢ m;

(42)

where b;, c; are to be determined.

Egs. (39) to (41) can be converted into a system of

linear equations''".

z blU_ (x,) +k(x)] + Z ciky(x,) = wy(x,)
] F=1.2....N (43)
Y b)) + Y LU (%) +ky(x)] = w,(x,)
j 12N (44)

where k,,.(x,) is the improper integral.

The stress intensity factors at the crack tips are defined

as
_2 7 .
K, (1) = 0 +K;bj, K, (-1) =m;(—1)fbj
(45)
_2 27 .
K, (1) = . +K;c,, K,(-1) = . +K;(—1)fcj
(46)

4 Numerical Results and Discussion
4.1 Temperature field

In this section, the numerical results of the temperature
distribution along the crack surface are analyzed.

Fig. 2 depicts the effect of the thickness %, on the nor-
mal temperature distribution (NTD) as 6= -1, §=1, R

=0 and h, =3. It can be obtained that the variation of the
thickness of the graded coating has a significant effect on
the temperature jump across the crack surfaces when
keeping the thickness of the substrate constant.

Fig. 3 depicts the effect of 4, on the NTD. It is
possible that the thickness of the substrate strip and the
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Fig.2 The effect of &, on the NTD. (a) 6=1, h; =3; (b) 6=
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position of the crack are closely related to the NTD. The
variation of &, has an obvious influence on the tempera-
ture jump across the crack surface when h, is smaller.
The temperature jump across the crack upper and lower
surfaces is more obvious.

4.2 Thermal stress intensity factors ( TSIFs) at crack
tip

In this section, the thermal stress factors are normal-
ized by K, =u,Q,0,¢/k,. The normalized TSIFs are ob-
tained by the numerical technique. The influence of the
crack position and the thermal-elastic parameters on the
TSIFs of mode [ is presented in Fig. 4 to Fig.8; the sit-
vation of mode [ is similar to mode [ .

Fig. 4 shows the effects of § on the TSIFs when keep-
ingB=1, y=1 and thickness h, =1 constant, and the
mechanical loading w,(x) =0, w,(x) = —1. These re-
sults indicate that the absolute values of the TSIFs decline
rapidly with the increase in h,/h, when keeping § con-
stant. The TSIFs decrease as § increases. One reason for
this is that the FGM is quite effective in reducing thermal
stress. This means that the graded parameter controlling
the variation of the heat conductivity has a vital influence
on the thermal fracture of coating/substrate structure.

9.18¢ 8:
9.16

9.14
2.12

9.10

|K, (1)/Kq

9.08

9.06 1 L |
0.2 0.4 0.6 0.8 10
hs/h,

Fig.4 Effects of § on the TSIFs of mode [ at the crack tip

Fig. 5 depicts the effects of the graded parameters con-
trolling the variation of the elasticity modulus 8 on the
TSIFsas 6=1, y=1, h, =1, w,(x) =0, w,(x) = -1.
The absolute values K, decrease with the increase in
h,/h,, but decreases as B increases. These results imply
that the FGM coating has obvious effects on the crack in
the substrate.
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_ s e
= 914 ——0.5
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Z 9.10 —
< 9.08
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0.8 1.0

Fig.5 Effects of 8 on the TSIFs of mode [ at the crack tip

Fig. 6 illustrates the effects of the graded parameters
controlling the variation of the thermal expansion coeffi-
cient y on the TSIFs when 6=1, B8=1, h, =1. The ab-
solute values of K| decreases with the increase in h,/h,
and y. The absolute values of K decreases with the in-
crease in h,/h,, but increases with the increase in y.
These results suggest that the thermal expansion coeffi-
cient of the FGM coating is correlated with the crack tip
TSIFs.

9.20r
|
:§ 9.15
N
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Fig.6 Effects of y on the TSIFs of mode [ at the crack tip

The effects of h, on the TSIFs when =1, g=1, y=1
are displayed in Fig. 7. The absolute values of K| de-
crease with the increase in h,/h, and h,. The absolute
values of K decrease when /,/h, increases, but increase
as h, increases. It indicates that the position of the crack
is closely related to the absolute values of mode [ and
mode ][ at the crack tip.
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Fig.7 Effects of i, on the TSIFs of mode [ at the crack tip

Fig. 8 presents the effects of the thermal conductivity
index R on the TSIFs when §=1, 8=1, y =1. The ab-
solute values of the TSIFs decrease with the increase in
h,/h, and R. The absolute values of the TSIFs decrease
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Fig.8 Effects of R on the TSIFs of mode [ at the crack tip
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very slowly with the increase in h,/h, as the thermal con-
ductivity index R is a constant. But when the thermal
conductivity index R changes, the TSIFs vary very quick-
ly. It is likely that the variation of R has a significant
effect on the absolute values of TSIFs.

5 Conclusion

The problem of the FGM coating bonded to an elastic
substrate strip with a partially insulated crack under the
mechanical and thermal loading is investigated. Using the
Fourier transforms, the thermal-elastic mixed boundary
value problems are reduced to a system of singular inte-
gral equations. The singular integral equations are solved
by applying the Chebyshev polynomials. The numerical
results of the NTD and the TSIFs are displayed graphical-
ly for several degenerated problems. The influence factors
on the NTD and the TSIFs have been discussed in detail.
It shows that the heat conductivity index R and the thick-
ness of the coating have a significant influence on the
NTD on the crack surface. The influences of the parame-
ters on the TSIFs is quite significant. These results can be
used to gain better understanding of the fracture behavior
of graded coating. We can optimize the coating-substrate
structure to control the NTD and the TSIFs by adjusting
the thickness of the FGM coating and the parameters.
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