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Abstract: In order to analyze the heterogeneity in vehicular
traffic speed, a new method that integrates cluster analysis and
probability distribution function fitting is presented. First, for
identifying the optimal number of clusters, the two-step cluster
method is applied to analyze actual speed data, which suggests
that dividing speed data into two clusters can best reflect the
intrinsic patterns of traffic flows. Such information is then
taken as guidance in probability distribution function fitting.
The normal, skew-normal and skew-t distribution functions are
used to fit the probability distribution of each cluster
respectively, which suggests that the skew-t distribution has
the highest fitting accuracy; the second is skew-normal
distribution; the worst is normal distribution. Model analysis
results demonstrate that the proposed mixture model has a
better fitting and generalization capability than the
conventional single model. In addition, the new method is
more flexible in terms of data fitting and can provide a more
accurate model of speed distribution.
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peed is an important measurement of the traffic per-
formance of a highway system''.
and simulation models of traffic use speed as the perform-
ance measurement of a transportation system'”. An ap-
propriate mathematical distribution can help describe
speed characteristics and is useful for developing and vali-
dating microscopic traffic simulation models. It is neces-
sary to find an appropriate mathematical distribution to
describe speed data.

Traditionally, normal, log-normal and other forms of
distribution have been used to describe speed data when
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the characteristics of speed data are more or less homoge-
neous””'. However, if the characteristics of speed data
become heterogeneous and speed distribution exhibits
bimodality (or multimodality), the unimodal distribution
model fails to obtain a satisfactory fit. Dey et al. ' used
a single normal mixture distribution to represent the bi-
modal speed distribution under a mixed traffic situation.
Ko and Guensler'”" analyzed speed data by assuming that
the speed distribution over a given time period has a form
of mixed normal distribution. Park et al. ™ captured the
heterogeneity in speed data through the finite mixture of
normal distributions. The results show that the finite mix-
ture of normal distributions can effectively describe the
heterogeneity of speed data. Jun'™' investigated traffic
congestion trends by speed patterns during holiday travel
periods using the normal mixture model and the expecta-
1. " pro-
posed the skew-normal and skew-t mixture models to fit

tion maximization ( EM) algorithm. Zou et a

speed data to capture excess skewness, kurtosis and bi-
modality present in speed distribution. However, a major
difficulty associated with mixture models is that the num-
ber of components in mixture models is determined in an
ad hoc and subjective manner without any intelligent
judgments and the criteria that are adopted to classify the
speed data to capture the heterogeneity of speed data may
be arbitrary. This situation becomes more severe when
more than two components in the model are considered.

The motivations of this paper are twofold. First, this
paper presents a methodological framework that combines
the advantages of cluster analysis and probability distribu-
tion function fitting to solve the aforementioned difficul-
ties. Secondly, cluster analysis can capture the heteroge-
neity in speed data and optimally and automatically divide
speed data into some components, so the causes of differ-
ent speed distributions can be identified through investiga-
ting the components.

1 Methodologies

1.1 Two-step cluster analysis

The two-step cluster method is developed for the analy-
sis of large data sets. It only requires the data input and
can also automatically select the optimal number of clus-
ters. It has two steps: 1) Pre-clustering the cases into
many small sub-clusters; 2) Clustering the sub-clusters
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resulting from the pre-clustering step into the optimal
number of clusters.

In the pre-clustering step, it scans the data records one
by one and decides whether the current record can be add-
ed to one of the previously formed clusters or it starts a
new cluster based on the following log-likelihood distance

criterion'""?
d(i,j) =& +& &, (1)
where
5ol
§“ =_N.x(; ?log(oﬁi+oﬁi)) S=i’j’<i’j>
(2)

where d(i,j) is the log-likelihood distance between clus-
ters i and j; the (i,j) index represents the cluster formed
by combining clusters i and j; K is the total number of
continuous variables; ¢; is the estimated variance of the
continuous variable k for the entire dataset; &, is the esti-
mated variance of the continuous variable k in cluster j.
The clustering step takes sub-clusters resulting from the
pre-clustering step as input and then groups them into the
desired number of clusters. Similar to agglomerative hier-

archical clustering''"

, those clusters with the minimum
distances d(i,j) are merged in each step. The process re-
peats with a new set of clusters until all the clusters have
been merged. Thus, it is quite simple to compare the so-
lutions with a different number of clusters.

The number of clusters can be automatically deter-
mined. A two phase estimator is used. In the first stage,
the Akaike information criterion ( AIC) or the Bayesian
information criterion ( BIC) " for each number of clus-

ters within a specified range according to

J
AIC(J) ==2Y & +2m,
o (3)
BIC(J) =-2Y ¢ + m,logN.
j=1

is computed and used to find a good initial estimate of the
maximum number of clusters, where J is the number of
clusters, m, =2KJ. Let d(J) =BIC(J) —BIC(J +1).
The maximum number of clusters is set equal to the num-
ber of clusters when the ratio d(J)/d(1) is smaller than
¢ (currently ¢ =0.04) for the first time. The second
stage uses the ratio change R (k) in distance for k clus-
ters, defined as R(k) =d,_,/d,, where d,_,is the dis-
tance if k clusters are merged to k — 1 clusters. The dis-
tance d, is defined similarly. The number of clusters is
obtained when a big jump in the ratio change occurs.

1.2 Probability distribution
1.2.1

The normal distribution of a random variable X is a

Normal distribution

continuous probability distribution that has a bell-shaped

probability density function, known as the Gaussian func-

tion ",

fOx o) =— exp(—%(’“‘“)z) (4)

o V2w o

The parameter  is the mean or expectation and ¢ is the
variance. ¢ is known as the standard deviation. The nor-
mal distribution is usually denoted by X ~N(u,o”).
1.2.2 Skew-normal distribution

A random variable X has a skew-normal distribution
with location parameter w, scale parameter o and skew-
ness parameter A if its density follows " the form .

Y(xlp,o® ) =%f(%)cb()\ %) (5)

where f(+) and @ () are the standard normal density
function and the cumulative distribution function, respec-
tively. The skew-normal distribution is usually denoted
by X ~SN(w,0”,1).
1.2.3 Skew-t distribution

A random variable Y follows a skew-t distribution with
location parameter ., scale parameter o, skewness pa-
rameter A and degrees of freedom v if it has the following

representation' "’ ;

Vepro X

JW

: v v
X~SN(uo' 1), W55 )

(6)

where X ~ SN (u,0”,A) is the standard skew normal dis-
tribution and independent of the Gamma distribution
I'(a,B) with mean o/B. The density of Y follows the

form'",

2 1
w(yM,az,A,w=azy<x,>T‘,”(Ax,, /jx) (7)

where x, = (y —u)/0o, t, and T, denote the standard
Student-t density function and the cumulative function
with v degrees of freedom, respectively. The skew-t dis-
tribution is usually denoted as ¥ ~ ST(u,0”,A,v).

2 Traffic Data Sets

The actual traffic data of roadway:; I-10 east bound
(sensor ID; L2-0010E-562. 581 ) on July 2, 2001 are
collected from TransGuide program'”’, the Advanced
Traffic Management System ( ATMS) at San Antonio,
Texas. TransGuide records speed, volume and occupancy
from individual lanes of roads at a 20 s interval using loop
The dataset contains 4 320
records during a single day. Before the collected traffic
data are used for this study, data quality control and pre-
processing are conducted to ensure data integrity and cor-
rectness. Some of the records show zero speed and some
show null vehicle presence. These data are removed from

detectors and video cameras.



482

Pan Yiyong and Sun Lu

the datasets.
tion contains 3 258 effective records.

The histogram in Fig. 1 displays the frequency of the
speed data, which appears to be multimodal with different
patterns. Obviously, there are two patterns: the high
speed group and the low speed group. Meanwhile, the
single normal, skew-normal and skew-t distributions are
used to capture the distribution of speed data. The nor-
mal, skew-normal and skew-t distribution functions are

Eventually, the dataset used for investiga-

N(58.76,11.87), SN (69. 37,40. 26, — 3. 96) and
ST(66.56,36.63,2.03,1.83) , respectively.
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Histogram and three probability distributions of speed

To capture the speed data heterogeneity, the two-step
cluster method is used to classify the speed data. After
data segmentation, normal, skew-normal and skew-t dis-
tribution functions can be used to capture the distribution

of each speed data subset, respectively.
3 Data Segmentation Results

the two-step cluster method is applied
The variables entered into
The number of

In this section,
to classify the speed datasets.
the computation are the original speeds.
clusters and the data of each cluster are obtained automati-
cally and optimally. Fig. 2 shows the resulting clusters
through the two-step cluster method. The speed datasets
are divided into two clusters, and the cluster quality is

very good based on the silhouette measure of cohesion
11]

separation'"'’. Tab. 1 shows the results of two clusters.
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Fig.2 The resulting clusters of speed dataset

Tab.1 The results of two clusters

Parameters Cluster 1 Cluster 2
Proportion/ % 11.5 88.5
Mean speed/(km - h~!) 28.9 62.64

4 Distribution of Each Cluster

As stated in the previous section, the speed data can be
clustered optimally and automatically through the two-step
cluster method. The purpose of this section is to develop
mixture models of speed distribution and identify hetero-
geneity in speed data. For the purpose of illustration,
normal, skew-normal and skew-t distributions are adopt-
ed to capture the distribution of the speed data in each
cluster.

Fig. 3 shows the normal distribution of two clusters.
All of the estimated normal model parameters are highly
statistically significant. The two normal distributions are
N(25.37,6.187) and N(63.64,4.189). Fig. 4 shows
the skew-normal distributions of two clusters. The two
skew-normal distributions are SN (21.71,133.12,1.3)
and SN(65.34,24.83,-0.92). Fig. 5 shows skew-t
distributions of two clusters. The two skew-t distributions
are ST (22.56,124.63,1.17,1.83) and ST (64. 65,
14.63, -0.73,5.76).

In this study, only normal distribution,
distribution and skew-t distribution are chosen to fit the
distribution of speed data. The fitting can be further im-
proved if other models of distribution are used. In this

skew-normal
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Fig.3 The normal distribution of two clusters
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Fig.4 The skew-normal distribution of two clusters
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Fig.5 The skew-t distribution of two clusters

regard, the comparison with other models of distribution
can be a subject for further study.

5 Comparison and Verification

To compare the new method that integrates cluster anal-
ysis and probability distribution function fitting with the
previous method that has a single probability distribution,
the fitting error e is defined as """

v

L [p(v) =) T

v —v . +1

max min

x 10°

Y
e =

where p(v) is the actual probability density function and
f(v) is the theoretical probability density function. v,
and v are the maximum speed and minimum speed, re-
spectively. Tab.?2 lists the fitting error of each model.

Tab.2 The fitting error of each model

Method Cluster Normal Skew-normal ~ Skew-t
1 95 86 83
New method 2 68 55 51
Total 162 141 134
Previous method 547 522 391

As shown in Tab. 2, the fitting error of three models is
reduced from 547 to 162, from 522 to 141 and from 391
to 134, respectively. Clearly, the results of the new
method that integrates cluster analysis and probability dis-
tribution function fitting are more accurate than the previ-
ous method that has a single probability distribution.

6 Conclusion

A methodology framework integrating cluster analysis
and probability distribution function fitting is presented.
The two-step cluster method is applied in cluster analysis
to actual speed data for identifying the proper clusters.
Normal, skew-normal and skew-t distributions are used to
fit the distribution of speed data in each cluster, respec-
tively.

The comparison with the previous method that has a
single probability distribution verifies the correctness of
the proposed method and demonstrates that the proposed

method is superior to the previous one. On the one hand,
the new method provides a more practical method because
the heterogeneity in speed data can be identified automati-
cally and optimally. On the other hand, the proposed
method has better fitting and generalization capability than
the previous method. In addition, the new method is
more flexible in terms of data fitting and can provide
more accurate model of speed distribution. Hence the new
method is attractive in dealing with the model of mixed
traffic flow.
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