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Existence of multi-bump solutions for coupled Schrodinger systems
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Abstract: The Schrodinger equation — Au + A u = \ u
has a unique positive radial solution U,, which decays
exponentially at infinity. Hence it is reasonable that the
- Auy + u = | | 2472
eb(x) [y [ " [ uy [y,
eb(x) |u, |
behave like U, in the neighborhood of some points. For u =
(u,,u,) e H(R') x H' (R"), a nonlinear functional /,(u) =

Schrodinger  system .

- Au, +u, = ‘ U, ‘zquuz -

u, \ "% 4, has multiple-bump solutions which

I(u) + Lu) - ij{b(x) lu, |* | u, | “dx is defined,

“ 2l |

> w2 ~2 J | u, | *dx. Tt is proved that the solutions

where I, (u,) = — || u, || u, | *dx and I,(u,) =

of the system are the critical points of /,. Let Z be the smooth
solution manifold of the unperturbed problem and T.Z is the
tangent space. The critical point of /, is rewritten as the form
of z+w, where we (T,Z) . Using some properties of 1, it
is proved that there exists a critical point of I, close to the form

y U —-&), ” \Y e hh : lt‘—b
(Zf (x =) Z{ (x 5,)) which is a multi-bump

solution.
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onlinear Schrodinger equations ( NLS) have been

broadly studied in many aspects,
of solitary waves, concentration and multi-bump phenom-
ena for semiclassical states. Menyuk'" showed that some
phenomenon can be described by the following two cou-
pled nonlinear Schrodinger equations:

i, + by, +( ¢2+b¢2)¢=0}
i+, +Cly [P+b ] [Hy=0

where b is a real positive constant depending on the ani-
sotropy of the fiber. Looking for the standing wave solu-

such as existence
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tions of the form:
d(x, 1) =" u(x), Px, 0 =e“"v(x)

and performing a rescaling of variables, it follows that

(u, v) satisfies the following system:

—w +u=|ulu+|v|u in R )
~V'+w'v=|v|’v+ |ul’v inR
where w’ = w./w;. In recent years, many researchers

have studied the nontrivial solutions of system (1,
Maia et al. ™
eral system with perturbation terms.

studied the existence of solutions for a gen-

In this paper, we will study the following problem:

in R’

in R’
(2)

where @ >0 and 2<¢g <3. Our goal is to prove that, for
e sufficiently small, system (2) possesses a nontrivial so-
lution with two multi-bump components.

~Au+u=ul|*u-eb(x) |v||ulu

—Av+ov= v v—eb(x) lul v ]

To state our main result, we first consider the follow-

ing NLS equation:

—Au+XNu=lul™’u R (3)

where A >0. It is well known that Eq. (3) has a unique
positive radial solution U,, which decays exponentially at
o, Let U=U,, V=U,, then (U, V) is a solution of
system (2) with £ =0. For n e N and for sufficiently sep-
arated ¢&,, &, ..., &, € R,

which is close to ( N Ux - &), D Vix - &) ) 18
i=1 i=1

called an (n, n)-bump solution. Our aim is to find this
kind of solution for system (2).

Throughout this paper, the following conditions for w
and b(x) are satisfied:

a solution of system (2),

q
g 2qg -1
b(x) is continuous and b(x) >0 for x ¢ R’
There exists ¢ >0 and ¢ >0 such that b(x) =ce

o lxl
(4)

Our main result is the following theorem.
Theorem 1 Assume that (4) is satisfied. If n satisfies

(2¢-Dw-4q

<1+
" (24-Do
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where @ = min{1, w}. Then there exists £(n) >0 such
that, for 0 < & < g(n), the system (2) has an (n, n)-
bump solution.

1 Abstract Setting

To prove our existence result we shall find critical
points of a class of perturbation functionals. Below we
The
procedure has been widely used in the literature ( see
Refs. [13 —18]).

Consider a Hilbert space H and let I, e C’(H,R) be a
functional. We assume that there exists a smooth mani-
fold ZC H such that

outline the so-called finite dimensional reduction.

I1.(2) || =0 (5)

as e—0 uniformly for z € Z.

Let us consider the tangent space 7.Z of Z at z and let
W =(T.,Z)"*. We shall look for the critical points of 7, of
the form z + w with w e W. We first consider the auxilia-
ry equation:

PI'(z+w) =0

where P denotes the projection onto W. In order to solve
this equation, we assume that there exists -y >0 such that,
for &£ small enough,

I [PI(2)] B I cowwm ¥ (6)
uniformly for z e Z.
Fix z € Z, and define B, ={weW: ||w| <
2y || I'(z) || }. We assume that
I 12(z+w) = I(2) || -0 (7

as ¢—0 uniformly for ze Z and w € B, ,. Define the map
S,: B, ,—W,

S.(w) =w—[PI'(2)] "(PI.(z+w)) (8)

According to the definition (8), the fixed point of S, is a
solution of PI' (z+w) =0. It is possible to show that for
& small enough, the map S, maps the ball B,  into itself
and is a contraction. As a consequence, there exists a
unique w, € B,  such that S,(w,) =w,. Moreover, one

has that
[w,. Il <2yl 1.(2) |
Finally, one considers the reduced functional
Ts(z) :Ie(z+wm) ze”l

and proves that if z, € Z is a critical point of 1,, then u, =
z, +w, . is a critical point of /.

2 Variational Reduction

In this section, we solve the auxiliary equation by veri-
fying formulae (5), (6) and (7). We will use the nota-

tion £ = H' (R’), endowed with two equivalent scalar
products and norms

(u\v) =fl(Vu- Vv + uv)dx, ||u||2 =(u\u)
(ulvy, =fx(w- Vvt @uw)dy, Jul? = (ulu,

We will work on the space H = E X E, equipped with
the scalar product and norm:

([ vy =Cuy Dy + QL) =l |7+ g |

for u=(u,,u,),v=(v,,v,) e H. Foru,, u,ekE, let

1 1
I(u) = ? (R7 ’ _EL; ‘ u, ‘qux

2,
“dx

1 1
I(u,) = o | u, | zw —ZL“ ‘ u,
For u =(u,,u,) e H, we define the functional of (2),

“dx

1wy = 1) + L) = 5[ b0 [uy [ u,
qr

Then the solutions of (2) are the critical points of /,.
For any positive integer n satisfying the assumption of

2q-D(@=-c(n-1)-q
2g-D(w-0(n-1)) °’

Theorem 1 and 0 <§ <
fine
1={e=te b ne) eRY 16-5 ] >

(1 —'o‘)lnL for isﬁj}
&

where &, = (&, &,, &) € R3’ Z = {Zg = (Zlé’z2§)

(iU(x—g,.), iV(x—gi)),g e T}. U and V are

the solutions of (3) with A =1 and M=o, respectively,
and

1 2ot =280 =)

0x 0x

a @

a=1,2,3; i:l,2,...,n}

W,=(T.2)" ={ueH:(ulv)=0 YveTl Z}

We also denote U(x -¢,) and V(x-¢,) by U, and V,,
respectively.

In the following we shall solve the auxiliary equation
by verifying formulae (5), (6) and (7).

Lemma 1  The perturbation functional /_ satisfies
(5). More precisely, there exists £, >0 such that for 0 <
& <&, we have || I;(Zf) | <Ce /9095 for any ¢ e
T..

&

Proof

L) d)] = (L), + gf‘b(x)zi’;d)lz;’stdx) +
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(I;(Zzg) [),] + f;J'R(b(x) fozggld)de)

For the first two terms, we have

Izl + ] badcdr| <

(LZUZ‘”de

(2¢-1)/(29)(1-8)
Ce™ 7 o |l

(29-1)/(29)
) el +Cello |l <

Similarly,

| 1(2,) [,] +ng}b(x)z?gzgf‘¢2dx\ <

CS(qul)/(2q)m(175) ” QD ”
2

Lemma 2 Assumption (6) in Section 1 holds. More
precisely, there exists 0 < g, < &, such that for 0 <& < g,,
we have || [PI",(z,)] | <yon W, for any £eT,.

Proof Since || PI'(z,) - PIi(z,) | <Cs, it suffices
to prove that || [PI{(z,)] Tl <y. Let

3
i = % T z 2 (Zg, ‘D]azf) ” Dfng || _ZD]azg

a=1 Jj#i

then z, e (T, Z) *. Denoting V, = span {z,(x) li=1,2,
. n}, we have W, =V, @V, and V, = V; N W,. One
can verify that @ I (z,) \V‘
@ I(z,) |
is invertible.
Lemma 3 Assumption (7) in Section 1 holds.
Proof Direct computation yields

Iz, + W) = I [(dy ) 1L ) | <
c(fo b [ L (S 0,) "+

) (2¢-2)/(2q)

is negative definite;
y, is positive definite. Therefore, PI{(z,) |

lw, |2 z U, dx

([ tw.l”

lw, |2 z V,dx
i=1
Celloll

Using the Sobolev embedding theorem, for sufficiently
small £, we have

(I (z, +w) —I(z)) [($1, d) I (1. ) ] <
‘ g2/ ‘

c(lwli?+|wl} SIS gl +

Celldll Iyl <CCIwl™ " +e) oIl vl

From Lemma 1 and || w || <2y || I.(2) |,
assumption (7).

Lemma 4 There exists 0 < &, < &, such that for 0 < ¢
< &, the auxiliary equation PI(z, + w) =0 has a unique

el g Il +
T+ lw, | (Zv)z"_]+

) (2¢-2)/(2q)

R IR (s

we obtain

w, . € W, satistying || w,, || =0 as &—0 uniformly for &
eT..

Proof According to Lemma 2, the map S, defined by

(8) makes sense. One can easily verify that S, is a con-
traction and maps B,  into itself. Hence the auxiliary
equation has a unique solution w, , <2y || I/(z,) || for &

sufficiently small.

3 The Regularity of w,_, and Estimation of Its
Derivative

In this section we will study the regularity of w, , and

estimate its derivative, and then we will use the critical
point of the reduced functional to construct the solution of
(2).

Lemma$ ForO<e<eg,, w,,
eT,.

We omit the proof.

is C' with respect to ¢

In the following we estimate d,w, ,.
Lemma 6 There holds 9,w, ,—0 as ¢—0 for £ T,.
Proof Since

0= oH(é, w, ., a, €) +6H(§, Woer @ 8) 0(W,., a)
Py a(w, (&), ) 0&

we have

aw, , az,

(9)

We estimate each term in the right hand side of (9).
From Lemma 4, we have
[woell SCILCE |l (10)
Secondly,

la; [ <CCw, || + 1.8 |)<C|I(& |
(11)

Finally, we can deduce

I'(z +w,, <C(O,(1) + [[w (&) | 7 +8)
(12)
Using Lemma 1 and combining (9) to (12), we obtain
‘ awgéf) ’—>O as ¢—0 uniformly for £ T,.

Defining 1,(¢) =1,(z, +w,(£)), we have the follow-
ing lemma.

Lemma 7 If £e 7, is a critical point of /,, then z, +
w, (&) is a critical point of /.

Proof We consider manifold Z, = {z, + w,(§): & e
T }. Since ¢ e T, is a critical point of /_, then one has
that (1,(z, +w,(£)) | ,)' =0, namely,

I (z, +w,(&))[D,z, +Dw, (£)] =0 (13)

Since I'(z, +w,(£)) e T, Z, one has that
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17z +w, () || = sup [ Iz +w,(£)[V] |
(14)
Therefore, using Lemma 6 and combining (13) and
(14), one has that || I’E(Z,f +w, (&) || <0,.(1) | I’g(zf

+w,_(£)) | for & small enough, which implies I;(z§ +

w,(£)) =0.
4 Proof of Theorem 1

In this section, we will prove that the reduced function-
al has a critical point in 7, for ¢ small enough in order to
complete the proof of Theorem 1.

We consider the reduced functional

1.(6) =1(z,+w,,) =1(z,) +
I(z)[w,. &1 +0( || w7

From Lemma 1 and Lemma 4 it follows that
L = L(z) + 1z + 5[ dedr s
(24-2)/q q-1)/q
2q-1
0( (J b(x) 7}, z5,dx ) )+0( 2(7 JR‘U“ Uédx) +

0( z J;{‘ qu—l Vf/d‘x) (2q-1)/q
i<j

where

1 1
Il(Zlg) = ?(Zlg ‘Zlg) - EL‘(Zlf)zqu =

n 2 l 2q 2q-1
—NU|& -5 U“Ud
ney + 3o NUNE =5zl + 3 [ x

i<j

with ¢, =1,(U) and

_ n 1
L(zy) = nc, + - || VI “2g [EA

ZJVZ"'de

i<j

with ¢, =1,(V).

In the following, we argue by the method introduced in
Refs.[19] and [20]. We define M, = sup{1,(£): &€
T,}. One can deduce the following lemma.

Lemma 8 Assume that n=2. Then there exists 0 < g,

<&, such that for 0 < g <g,, M, > sup{]g(g): EeT,

and | ¢ -¢ | e [(1-5)1111? (1-5)111%”] for

some i#j }
For any 0 <& <eg,, let £&(g) = (& (&), &(e),
§ﬁ(a)) e T, be a maximizing sequence of 78 for k=1,2,
Then Lemma 8 implies that irklf min | & (&) -
i)
§f(s) = ((1 -6)In LS +1 ) Therefore, passing to
e
subsequence if necessary, we may assume that either lim

E(s) =€ (&) e R with | & (s) - & (&) ]

((1 —5)1ni+1) for i or lim | ¢(e) | = . Define
& 0

m(e) ={1<isn: |€(e) | >» as k—o )} for 0 <e<
&4

Lemma 9 Assume that n=2. Then there exists 0 <
eg(n) <g, such that for 0 < e <e(n) w(e) = .

Proof
m(e) # (J along a sequence g, —0. Since 7w (¢g,) D
w(e, ., ), we may assume that 7(g,) ={1,2, ...,j,} for
all me N and for 1 <j, <n. We consider two cases: 1) j,
<n; 2) j, =n. For convenience of notations,
denote ¢ = ¢, and &' = ¢ (e,).

1) j,<n

Denoting

We argue by contradiction and assume that

we shall

gk* =(§/]‘(“+1’§/]‘(“+2’ A é:::)
Eomb = (60 6D

we have

1(&) =(n—-j)e, — == || Zie | 2% PR || Ul

f Uzq ‘U dx +(n — j")CO —7 I 2o gt I L‘i, +

j+l<l</
2—"||V||§z,+ fvzq‘de+

Jorl<i<j’R

£ a4 (2g-1)/qa(1-8)
< L‘b(x) 2 2l dr 4 O(g 700y
Hence

L(E) —1,(&) =, - o || Zg 124 +

1
24 Iz I 2% +

J 2 . 2 2
PN U 480 = 5 2 N34 5 2 1
fiuvnz" + Zf U Ud

i<j jtl<i<j’R

ZJVZ‘”de—

i<j JoAl<i<j’R

j U Udx +
f VA Vadx +

< £ b (hate = 2l ) de + 02 (15)

We have
1 1 J,,
“2g |z Il 2% +og || Ze |13+ || Ul <
2qq—1 f U Uydx (16)
i=1 j=i+l
1
~2g | 2o || 24 + || e |l 12 S
2qq"1 j Vi ‘v dx (17)
i=1 j=i+l

By (15), (16) and (17), we have
jg(fk) _75(5,{‘) < J,¢ +J.Co +
& —1)/qa(1 -
Ef PO (Gt = gl O(V )
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Letting k—o and noticing that there holds | £ | —
fori=1,2,...,j,, we have
M, <j,co+j,8 + (&) +0(&% "1 9) (18)

1

On the other hand, let & = ((4s -2n _2)2‘17_(1 -

5)1n ,0, O) s=1,2,...,n, then the open balls

B, (f 29-1 (1 - )1nf) are mutually disjoint. Thus

there are j, 1ntegers from {1,2, ..., n} denoted by s, <s,

<...<s; such that for i =1, ...,j,,j=j, +1,...,n, we
have

& -¢ = (1—6)1n— (19)
fori=1,2,...,j; j:jn+l,...,

Letting ¢; =&;, we have

g-g 1> asm . isics,
(20)

& | <(n-1)2 (1—5)1— i=1,2,....j,
(21)

Letting £ = (&7, ..., &, 5?"”, ey &) and using (16)
and (17), we have ¢" e T,. Denoting & by & for j, +1
<j<n, we have

el - . 1
1(&) - 1,(&) =j.c - 2g 4 o+
1 ]ll q
2 I 2 || 2%+ || Ul +j,6 -
1 Jn
5 || 2 | 12 * 5 || 2 || 2 * 54 || VI +
ZfU“de- fUz"‘de+
i<j Jjorl<i<j'R
S VirVede = 3 [ ViV, dr+
i<j j+l<z</
;L‘b(x)(zj’gfz;’é,. — Zip Zyp ) dx + 07"/ w10y
(22)
We have
1 Zq 2q
IIZm || +*IIZ.E (s +*IIU|| =
- c f US U, dx (23)
i= I, i+l
inz,nz% AR Ve
2 ZE L ZE q L
- c f qu 'V, dx (24)
i= l, i+l

Using (19) and (20), we have

2q-1)/q(1-§
_ C{-,‘( q-1)/9(1-8)

- ju U,dx = (25)

2q-1)/q(1-8
_Cg(q )/q(1-d)w

_ fR‘ng"Vadx = (26)

Using (22) to (26), we have
L&) =1,(&) = j,cq +J,& = Ce® 0 4

&£ q q
< [ b (zlezty = 2l 2l d (27)

Using assumption of b(x) and (21), we have

1+(2¢g-1)/g(1-8)o(n-1)
o o

%f () (Zip2ye = Zip ) dx = C
R

(28)
Combining (27) and (28), we have

L(E) =1.(8) =j,cq +),6 = Ce™ "0 +

C{;‘l +(2g-1)/q(1 -8)o(n-1)

According to the choice of §, when & is small enough,
we have

M827€(§£) 2‘]-"CO +J-HEO +7€(§0*) + C81+(2q71)/q(1—5)n()171)

which contradicts (18).
2) j,=n
Taking &° = (&5, &, ..., &), where & = ((41’ -2n-2)

(2¢-1)/(2g)(1 ‘5)111 ! ,0, 0) eRi=1,2,...,n, we
have
M <1 (&) <nc, +n¢, + Cg?1~ "%~
M, =1,(&) =nc, +nec, + Cg' T2 V/at =20t

It follows from the two cases that (&) = &

Proof of Theorem 1 For n=2, according to Lemma
9, if0<e<e(n), 78 can achieve its maximum at some
point £ =(&,,&,, ...,

ma 7 we know that z, +w,(£) is a critical point of /,.

&) eT,. Hence, according to Lem-
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