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Abstract: An algorithm for recovering the quaternion signals in
both noiseless and noise contaminated scenarios by solving an
L,-norm minimization problem is presented. The L,-norm
minimization problem over the quaternion number field is
solved by converting it to an equivalent second-order cone
programming problem over the real number field, which can
be readily solved by convex optimization solvers like SeDuMi.
Numerical experiments are provided to
effectiveness of the proposed algorithm.

the experimental results show that under some
practically acceptable conditions, exact signal recovery can be

illustrate  the
In a noiseless
scenario,

achieved. With additive noise contamination in measurements,
the experimental results show that the proposed algorithm is
robust to noise. The proposed algorithm can be applied in
compressed-sensing-based signal recovery in the quaternion
domain.
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r I Y he problem of L, -norm minimization plays an im-
portant role in the recently developed compressed
1131

sensing (CS) theory
ta acquisition and has wide applications in the field of sig-

, Which is a new approach for da-

nal and image processing. CS has been conventionally
used to real input data. Recently, special attention has al-
so been paid to the complex input data such as blind
" and terahertz imaging" .

On the other hand, the theory and application of qua-
ternion or hypercomplex algebra, invented by Hamil-
ton'”, have received much attention in recent years!” .
Ell and Sangwine'”" applied the quaternion Fourier trans-
form to color image processing. Jiang and Wei'' pro-
posed an algorithm for solving the quaternion least
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squares problem:

min [|Ax -y, s.t. Bx=z (D)

where A e Q"", Be Q"*", xe Q"', ye Q"', Q de-
notes the quaternion number field, and | - Hz denotes the
L,-norm of quaternion vector. The algorithm reported in
Ref. [9] was further extended by Jiang et al. "'’ to a two-
dimensional scenario where the inputs are quaternion ma-
trices. Note that the algorithms reported in Refs. [9 —10]
solve the overdetermined system, that is, n=m for meas-
urement matrix A.

In this paper, we consider the recovery problem of
quaternion signals for the case where n <m, that is, we
deal with the underdetermined linear system with meas-
urement matrix A, which is quite different from that of
(1). We will do that by solving an L,-norm minimiza-
tion problem. To the authors’ knowledge, the L -norm
minimization problem for the quaternion signals has not
yet been investigated. Winter et al.*' converted the
L,-norm minimization of complex signals to the second-
order cone programming ( SOCP ), which was then
solved by SeDuMi software'”’. In this paper, we extend
the algorithm'*’ to the quaternion signals with and without
noise contamination, which are, respectively, defined by

the following two optimization problems :
min [|x], s.t. y=Ax (2)
min ||x/, s.t. |[Ax -y, <e (3)

where || - Hl denotes the L,-norm of the quaternion vector
and ¢ is the noise penalty level for noise term e in noise
measurements y = Ax +e.

1 Definitions

A quaternion g is a hypercomplex number which con-
sists of one real part R (¢g) and three imaginary parts
I(gq), J(q) and K(q) as follows:

qg=R(q) +I(q)i+J(q)j+K(q)k (4)

where R(q), I1(q), J(q), K(q) e R; and i, j and k
are three imaginary units obeying the following rules;

F=f =k =ijk= -1 (5)

ij=—ji=k, jk= —ki=i, ki= —ik=j  (6)
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The conjugate and modulus of a quaternion are, re-
spectively, defined as

q" =R(q) -1(q)i-J(q)j-K(q)k (7)
lql= VR (q) +F(q) +J(q) +K (q)  (8)
We also define
A=[a , " ,a,] (9)
x=[x,,x,]"=R(x) +1(x)i+J(x)j+K(x)k
(10)
y=ly ] =R(y) +1(y)i+J(y)j+K(y)k
(11)
The L,-norm of a quaternion vector x is given by
s, = (F )" p=12 (D)

2 Method

In this section, we derive an algorithm based on SOCP
for L, -norm minimization problems dealing with quaterni-
on signals.

2.1 Noiseless case

The minimization problem shown in (2) is equivalent
to its epigraph form:

min fe R" s.t. y=Ax, x|, <t (13)

By introducing auxiliary variables ¢, € R*, where r =
1,2,---,mand R" denotes the positive real number field,
the second constraint | x Hl <t can be decomposed into a
set of m constraints

ITRCx,)  1(x,) (%), K(x) 1" o<t,  r=1,2,-,m
(14)
and (13) becomes
min17te R
s.t. y=Ax
ITRCx,) 1(x,) I (x,)  K(x) 1M <t r=1,2,m
(15)

After some manipulation, (15) can be written as
. AT A
miné £ eR
X
s.t. § =A%

ITR(x,),1(x,) ,J(x,) K(x) ] <t r=1,2,-,m

(16)
where

X = I:tl ,R(xl) J(xl) ,J(-x1> ,K(xl),""
t,,R(x,) I(x,),J(x,) ,K(x,)]" eR"
(17)

¢=[1,0,0,0,0,---,1,0,0,0,0]"eR™ (18)
$=[R(y) (), J(y),K(y)]"eR"  (19)
r0 0 0 o 7
R(a))" I(a)" J(a)" K(a)"
-I(a))" R(a)" K(a)" -J(a)"
-J(a,)" -K(a)" R(a)" I(a)"
-K(a,)" J(a)" -I(a)" R(a)"
A= : : b | R
0 0 0 0
R(a,)" I(a,)" J(a,)" Ka,)"
-I(a,)" R(a,)' K(a,)' -J(a,)'
-J(a,)" -K(a,)" R(a,)" I(a,)"
L -k(a,)" J(a,)" -Ia,)" R(a,)"
(20)

2.2 Noise case

Similar to the previous case, the minimization problem

shown in (3) can be reformulated as
min é'£ e R
s.t. A% -, <e
ITR(x) ,1(x,) ,J(x,)  K(x) 1 <t r=1,2,.m
(21)

The first inequality constraint of (21) can be written as

2TATAR -28"ATy + < (22)
or equivalently
||ZHZS2'ZOZI (23)
where
" 82 R AT A
z:AxA’ z():], zlz7+xATATﬁ—y2y (24)

Here (z,z,,z, ) belongs to a rotated second-order
cone. Taking the linear relationship among ¥, z, z, and
z, into account, we can obtain a linear constraint;

Ax =b
where
_ ATA_gZ
b:[o’l’yy ]ER4n+2
2
¥ = [f,z,zo,zl] ER4n+5m+2
§TA -1
A - O ! ER(4n+2)x(4n+5m+2)

'
n 1
'
A -1
'
|
Negative identity matrix

And the original problem can be turned into a second-or-
der cone problem as
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. AT~
min¢ X € R
x

s.t. b=Ax

ITR(x,) I(x,),J(x,) , K(x) 1" |, <z, r=1,2,--.m
lzll, <2 z,z,

62[6,0] ER4n+5m+2 (25)

X — [xA,z,ZO ’zl ] e R4n+5m+2
(16) and (25) are the standard forms of the SOCP
problem and can be solved by using several mature tool-
Then, we can easily obtain
the recovered quaternion signal xr from ¥ or x.

boxes, such as SeDuMi el

3 Numerical Experiments

In a noiseless scenario, just as in Ref. [ 1], we present
numerical experiments that indicate empirical bounds on
sparsity s (time domain support of the input signal) rela-
tive to n (the number of measurements) for perfectly re-
covering a quaternion signal x. The results can be seen as
a set of practical guidelines for situations in which one ex-
pects perfect recovery from random Gaussian quaternion
measurements using SOCP. Numerical experiments are
carried out as follows:

1) Ann by m (m =512 is the length of input signal, n
is the number of measurements) random Gaussian meas-
urement matrix A € Q""" (n<m) is produced with ran-
dom entries sampled from an independent and identically
distributed (i.1i. d. ) Gaussian process with a zero mean
and a variance equaling 1 (in quaternion L,-norm sense).

2) Sparse quaternion input signal x € Q"' is produced
by selecting a support set T of size |T| =s ( sparsity)
uniformly at random and sampling a vector x on T with
i.1.d. Gaussian entries.

3) Quaternion output signal y € Q"' is obtained by
multiplying A with input x.

4) The vectors £, ¢, § and matrix A are constructed as
described in (17) to (20).

5) SeDuMi toolbox "' is called to solve SOCP problem
(16) and the error is computed, which is the L,-norm of
the difference between the recovered signal xr and the in-
put signal x, i.e. , || xr —x||2,

We perform experiments 100 times for each pair of s
and n, then we save these errors and count the number of
perfect recovered experiments. The criterion for perfect
recovery is chosen as ||xr —x||2 <107°.

Fig. 1 shows the recovery success rate of 512-length
signals with different measurement numbers and sparsity
level configurations. The image intensity indicates a suc-
cess ratio with sparsity level s and measurements number
n. Fig.2 depicts its cross section at five different values
of n. It can be seen from this figure that for n =32, the
recovery rate is about 80% when s<n/5 and practically
100% when s < n/8. These results are very similar to
those reported in Ref. [ 1] which deals with the real sig-
nal with length m =512.
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Fig.1 Recovery experiment for m =512
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Fig.2 Cross section of Fig. 1 at n =8,16,32,64 and 128

To further illustrate the recovery results, Fig. 3 and
Fig. 4 depict the original quaternion signal x and its corre-
sponding recovered signal xr. In Fig.3, m =512, n =
160, and s =60 and the quaternion signal is perfectly re-
covered. In Fig.4, m =512, n =160, and s =120 and in
this case the recovery process failed.
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Fig.3 Illustration of successful recovery of quaternion signal

with sparsity level s =60. (a) Original signal, r part; (b) Recov-
ered signal, r part; (c¢) Original signal, i part; (d) Recovered signal,
i part; (e) Original signal, j part; (f) Recovered signal, j part;
(g) Original signal, k part; (h) Recovered signal, k part

In the noise case, the original signal x and measure-
ment matrix A are generated as in the noiseless case n =
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160, m =512, s =60. The measurements are corrupted
by the white quaternion Gaussian noise vector comprised
of i. i. d. Gaussian variables with mean 0 and variance
o, so the squared L,-norm of noise vector le H; is a chi-
square random variable with mean 4ng” and standard de-

viation 2,/2n¢”. Since the probability that ||e||§ exceeds
its mean plus two or three standard deviations is small,

here we choose the constraint parameter &£ to be & =

o4n +4/2n .
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Fig.4 Illustration of failed recovery of quaternion signal with

sparsity level s = 120. (a) Original signal, r part; (b) Recovered
signal, r part; (c) Original signal, i part; (d) Recovered signal, i
part; (e) Original signal, j part; (f) Recovered signal, j part; (g)
Original signal, k part; (h) Recovered signal, k part

We carried out ten recovery trials at different noise lev-
els, and the average recovery errors with respect to corre-
sponding noise strengths in those experiments are shown
in Tab. 1. The results in Tab. 1 show that the proposed
recovery algorithm is robust to noise contamination, and
the recovery errors are about two times the noise
strengths. An example of a recovery of sparse signals
with noisy measurements is shown in Fig.5 (g =0.5).

Tab.1 Recovery errors with respect to corresponding noise
strengths
o 0.0 0.02 005 0.1 0.2 0.5
e 0.27 0.53 1.33 2.67 534 13.3
Nl I, 73.0  81.8 76.5 723 71.9 6.7
llell, 0.25 0.51 1.30 2.62 5.15 12.7
lor-xll, 1.31  1.64 3.63 569 123 26.2

4 Conclusions and Future Work

In this paper, we propose an algorithm for solving the
L,-norm minimization problem of quaternion signals,
which is converted to SOCP and then solved by SeDuMi
software. Numerical examples are provided to illustrate
the feasibility of the algorithm. The results can be viewed
as a set of practical guidelines for situations where one
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Fig.5 Example of sparse signal recovery with noisy measure-
ments. (a) Original signal, r part; (b) Recovered signal, r part; (c¢)
Original signal, i part; (d) Recovered signal, i part; (e) Original sig-
nal, j part; (f) Recovered signal, j part; (g) Original signal, k part;
(h) Recovered signal, k part

expects perfect or stable recovery from random Gaussian
quaternion measurement matrix information using SOCP.
The main advantage of the proposed algorithm is that
when converting the quaternion values optimization to that
of real values, many mature toolboxes can be applied.
However, the converting process decouples the real and
imaginary parts of the quaternion signals and no prior
phase information is exploited. Further research includes:
1) Considering the prior phase information in quaternion
signals optimization”’ ; 2) Extending the quaternion sig-
nal vector L, -norm minimization algorithm to that of qua-
ternion matrix nuclear norm minimization, that is, qua-
ternion matrix completion''®’; 3) Studying the problem

of robust quaternion principal component analysis "’ .
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