Journal of Southeast University (English Edition)

Vol. 29, No. 1, pp.43 —47

Mar.2013 ISSN 1003—7985

Gaussian mixture model clustering
with completed likelihood minimum message length criterion

Zeng Hong'

Lu Wei’

Song Aiguo'

(" School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

(* College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

Abstract: An improved Gaussian mixture model ( GMM)-
based clustering method is proposed for the difficult case
where the true distribution of data is against the assumed
GMM. First, an improved model selection criterion, the
completed likelihood minimum message length criterion, is
derived. It can measure both the goodness-of-fit of the
candidate GMM to the data and the goodness-of-partition of
the data. Secondly, by utilizing the proposed criterion as the
clustering objective function, an improved expectation-
maximization (EM) algorithm is developed, which can avoid
poor local optimal solutions compared to the standard EM
algorithm for the model The
experimental results demonstrate that the proposed method can
rectify the over-fitting tendency of representative GMM-based
clustering approaches and can robustly provide more accurate
clustering results.
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model

he Gaussian mixture model (GMM) is commonly
T used as a basis for cluster analysis!'™. In general,
the GMM-based clustering involves two problems. One is
the estimation of parameters for the mixture models. The
other is the model order selection for determining the
number of components. The expectation-maximization
(EM) algorithm is often used to estimate the parameters
of the mixture model which fits the observed data. Popu-
lar model selection criteria in the literature include the

Bayesian information criterion (BIC), Akaike’s informa-
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tion criterion ( AIC), the integrated likelihood criterion
(ILC), etc.

However, most previous studies generally assume the
Gaussian components for the observed data in the mixture
model. If the true model is not in the family of the as-
sumed ones, the BIC criterion tends to overestimate the
correct model size regardless of the separation of the com-
ponents. In the meantime, because the EM algorithm is a
local method, it is prone to falling into poor local optima
in such a case, leading to meaningless estimation. In or-
der to approximate such a distribution more accurately,
the feature weighted GMM, which explicitly takes the
non-Gaussian distribution into account, is adopted in
Refs. [3 —8]. Nevertheless, the approaches in Refs. [3 —
8] assume that the data features are independent, which is
often not the case for real applications. Based on the min-
imum message length (MML) criterion, Ref. [9] pro-
posed an improved EM algorithm that can effectively
avoid poor local optima. But we find that it still tends to
select much more Gaussian components than necessary for
fitting the data with uniform distribution, giving obscure
evidence for the clustering structure of data.

We propose a novel method to address the model selec-
tion and parameter estimation problems in the GMM-
based clustering method when the true data distribution is
against the assumed one. In particular, we derive an im-
proved model selection criterion for mixture models with
an explicit objective of clustering. Furthermore, with the
proposed criterion as the cost function, an improved EM
algorithm is developed for estimating parameters. Ulti-
mately, the proposed method is not only able to rectify
the over-fitting tendency of some representative model se-
lection criteria, but also able to avoid poor local optima
of the EM algorithm.

1 Completed Likelihood of the Gaussian Mixture
Model

Suppose that a D-dimensional sample follows a K-com-
ponent mixture distribution, then the probability density
function of y can be written as

p(y1O) = Y wply|6) (1)

where w, is the mixing probability for the k-th mixture
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K
component with 0w, <1 and 2 w, =18, is the inter-
k=1

nal parameters describing the k-th mixture component. @
={0,, ..., 0,;w,, ..., w} denotes the D, dimensional
vector describing the complete set of parameters for the
mixture model. p (- \ 0,) defines the k-th Gaussian den-
sity. The GMM is typically an incomplete data structure
model. N independent and identically distributed samples
of the incomplete data Y are denoted as Y = {y,, -y, !,
and the complete data are Y= {Y,Z} = { (y,,z,), (¥,
Zy) |, where the missing data are Z = {z,,--,z,}|, with
2,=12,,"",%, being the binary label vector such that
z,, =1 if and only if y, belongs to the k-th mixture com-
ponent and z,, = 0 otherwise. Z is normally unknown,
and it must be inferred from Y. The observed log-likeli-
hood of @ for the incomplete data Y is

logp(Y\@) = zlogzwkp(yn 0,) (2)
n=1 k=1

The completed log-likelihood of Y is

N K
logp(Y[@) =3 Y z,log(wp(y, 16,)) =
n=1 k=1
logp(Y | @) +logp(Z|Y,0) =
N K N K
zlogzwkp(yn 0,) + 2 zznklogpnk
n=1 k=1 n=1 k=1
(3)

where p,, is the conditional probability of y, belonging to
the k-th component and can be computed as

w p(y,186,)

Pu = 7k
ijp(yn
i=1

In practice, the true parameter @ in Egs. (2) and (3)
is replaced using the maximum likelihood ( ML) estimate
@, and then the completed log-likelihood is rewritten as

(4)

0,)

N K
ék) + 21 ; Z,dogp,,
(5)

N K
logp(Y @) = Y log ¥ w,p(y,
n=1 k=1

where

1 if arg max. p, .=k
fu={ 5P (6)

0 otherwise

2 Clustering with Completed Likelihood Minimum
Message Length( CL-MML) Criterion

2.1 Completed likelihood minimum message length cri-
terion

The MML criterion defines a goodness measure for a
model with an inherent bias towards simple models'"".
Based on the formulation of the MML criterion for a gen-
eral density model in Ref. [9 ], the MML criterion for the

GMM of the complete data Y can be written as follows
MML(K) = -logp(®) -log(Y | ®) +

| ) 1
2log\lc(@) | + 5 (1+10g 12) (7)

where logp (Y | @) is given in Eq.(5); I, (@) =
—E[9’logp(Y | @)/0@a@" ] is the expected Fisher in-
formation matrix associated with the complete data Y, and
|I. (@) | denotes its determinant. By differentiating
logp(Y | @) in Eq. (5), I,(®) has a block-diagonal
structure I, (@) = N block-diag { w,I'" (@, ), -,
W IV (0,),A} where I'V (@,) is the Fisher matrix for a
single observation produced by the k-th component, and
A is the Fisher matrix of a multinomial distribution with
|A| = (W,W,--W,) . Since we have no knowledge
about the parameters, we adopt the non-informative
Jeffrey’s priors as in Ref. [9], i.e. ,

P((:)) ZP(Wn""WK)HP(ék) (8)
where p (8,) o« /I (6,) |, p (W, =, W) o

V' TA] After substituting p(@) and |I. (@) | into
Eq. (7) and dropping the constant items, we obtain the
explicit form of CL-MML for the GMM of the complete
data as follows:

CL-MML(K) =-1log(Y|@®) +( - 3 Y 2, logp,)+

n=1 k=1
K
D
%;logvf/k +7k(1 + logN)
(9)

where M is the number of parameters in each component.
The first item on the right hand side of Eq. (9) emphasi-
zes the goodness-of-fit of the candidate GMM. The third
and the fourth items control the complexity of the GMM.
Compared to the standard MML for the GMM of incom-
plete data in Ref. [9], CL-MML has an extra non-nega-
tive penalty item, i.e. , the second item on the right side
of Eq. (9). This item is essentially a measure of the K-
component GMM to provide a relevant partition of the da-
ta Y. If the mixture components are well separated (i.e. ,
P, is close to 1 with z,,. = 1), such an item will be close
to 0. But if the mixture components are poorly separated ,
such an item will have a large value, implying that such
an unreasonable partition cannot discover the clustering
structure of data. By minimizing this item, CL-MML
prefers smaller K compared to the MML on the same data
set. In other words, CL-MML is expected to be able to
rectify the over-fitting tendency of the MML, favoring
mixtures which lead to a clustering result of the data with
the greatest evidence.

2.2 Estimation of GMM parameters

For the GMM, each component follows the Gaussian



Gaussian mixture model clustering with completed likelihood minimum message length criterion 45

5 P(y ‘ 0k> = G(y ‘Mk ’Ek) , whereﬂk
and 3, are the mean and the covariance matrix of the k-th

distribution, i.e

Gaussian components. For a fixed model order K, we es-

timate the GMM parameters @ by an improved EM algo-

rithm, with CL-MML in Eq. (9) as the cost function.

The proposed EM algorithm alternatively applies the fol-

lowing two steps in the #-th iteration until convergence ;
E-step: Compute the conditional expectation;

A(r> "(t)
; p(y, )
i:k) = (10)
A (1) 1)
2 )
M-step: Update the parameters of the GMM by
N
max{O, ( 3 ply ) _M}
A(t+l) n=1 2 (11)
k - K N
Y max{ ( 3l ) _M}
Jj=1 n=1
Zpiffyn
AlEHl) - (12)
me
) pr,f a0, -’
2/({t+l) —_ = 1 (13)
Zp(w
In Eq. (11), z p'Y can be viewed as the evidence for

the k-th component from the data points. Then according
to Eq. (11),
weak , namely it is not supported by the data, it will then
be driven into extinction.

when one of the components becomes too

Such a modification to the
standard EM can be expected to suppress spurious solu-
tions.

3 Experiments

We present experimental results to illustrate the effec-
tiveness of CL-MML for GMM-based clustering ( denoted
as GMM + CL-MML ) , compared to that of BIC ( deno-
ted as GMM + BIC), MML ( denoted as GMM +
MML), as well as the method utilizing the feature-
weighted GMM and the integrated likelihood criterion
(FWGMM +ILC) for clustering"*’

3.1 Synthetic data

We consider a synthetic 2D data set where data from
each cluster follow the uniform random distribution :

u (y,,y,) =
! NSY, SHLiLsY, <7
(rz—r,)(r4—r3) : : A ? ¢
0 otherwise

where r={r,, r,, r,, r,| are the parameters of the dis-

2,1"

19
tribution. 1 000 data points are generated using a 5-com-
ponent uniform mixture model. Its parameters are as fol-

lows :

w, =0.1,w,=w, =w;=0.2,w,=0.3
r,=1-1.89,4.07, 4.89, 7.94}
{111511247 353}
15.17, 6.53, 2.77, 5.77}
14.31 6.49,6.29,6.71}
—{5.58,8.42,—0.77,2.23}

r,
r;
r,

The Gaussian components are adopted to fit such a uni-
form mixture data set, for which the true distribution
models are very different from the assumed ones. The
models with the number of components K varying from 1
to K., a number that is considered to be safely larger
than the true number (i.e., 5),
set to be 30 in this case. We evaluate these methods by
the accuracy in estimating the model order and structure.
Tab. 1 illustrates the number of times that each order is
selected over 50 trials. Fig.1 shows typical clustering re-
sults by these four methods.

It can be observed that for such a data set, the GMM +
BIC approach not only fails to yield a good estimation of
model order (see Tab. 1), but also leads to a meaning-
less mixture model by the standard EM (see Fig.1(a)).
Although the MML criterion generates a GMM which fits
the data well, it suffers from severe over-fitting as shown
in Fig. 1 (b) and Tab. 1. Since the features are assumed
to be independent in FWGMM,
more components in order to approximate the distribution
of data accurately (see Fig.1(c) and Tab.1).

are evaluated. K

max

it also tends to select

Tab.1 Number of times for selected model orders over 50
trials on synthetic data

Model order GMM + BIC GMM+ FWGMM+  GMM +
MML ILC CL-MML
5(true) 0 0 0 31
6 22 0 0 13
7 13 2 0 6
8 15 3 0 0
9 0 3 0 0
10 0 4 0 0
11 0 5 2 0
12 0 5 6 0
13 0 7 12 0
14 0 9 15 0
15 0 12 11 0
16 0 0 4 0

In contrast, due to the introduction of an extra penalty
to the MML criterion, the proposed CL-MML criterion-
based GMM clustering favors much fewer but more
“powerful ” components which successfully detect the
clusters. The clustering result in a typical successful trial
of CL-MML is shown in Fig.1(d).
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Fig.1 Typical clustering results of different methods on the
synthetic data. (a) GMM + BIC;(b) GMM + MML; (c) FWGMM +
ILC;(d) GMM + CL-MML

3.2 Real data

We also measure performance on four real-world data
sets from the UCI repository. The number of classes, the
number of samples and the dimensionality of each data set

are summarized in Tab. 2. For each data set, we random-
ly split the data 50 times into training and test sets. Train-
ing sets are created from 50% of the overall data points.
We do not use any label in the training stage. K, is still
set to be 30. After model learning, we label each compo-
nent by majority vote using the class labels provided for
the test data, and we measure the test set classification ac-
curacy as the matching degree between such obtained la-
bels and the original true labels. The means and the
standard deviations of the classification accuracy, as well
as the number of components for each data set, over 50
trials are summarized in Tab. 2. The best results are
marked in bold.

Tab.2 Comparison of different clustering approaches on
real data sets

Data set Method Accuracy K
GMM + BIC 0.6459 £0.0635 2.4 +0.89
Heart GMM + MML 0.6725 +0.0584 2.9 +0.89
FSGMM +ILC  0.6740 +£0.0965 4.2 +2.28
GMM +CL-MML 0.7014 £0.0429 2.4 +0.87
GMM + BIC 0.4824 £0.0386 21.6+2.46
Zemike GMM + MML 0.6714 £0.0341 13.01.15
FSGMM +ILC  0.6805 +0.0025 14.0 0. 00
GMM +CL-MML 0.7016 £0.0570 11.2+1.33
GMM + BIC 0.6640+0.0640 15.0x1.78
Landsat GMM + MML 0.7900 £0.0128 11.0+1.0
FSGMM +ILC  0.6368 +0.0574 13.8 +4.76
GMM +CL-MML 0.8134 £0.0105 9.1+1.79
GMM + BIC 0.6183 £0.0350 19.9£3.78
Image GMM + MML 0.8264 £0.0125 19.2 £0.83
FSGMM +ILC  0.8540+0.0238 23.1+1.74
GMM +CL-MML 0.8761 +0.0158 17.7 £1.41

Several trends are apparent. First, the numbers of com-
ponents determined by the proposed method are generally
less than those by the compared counterparts. This may
be due to the reason that the distribution of a real data set
often does not strictly follow the Gaussian mixture mod-
el, and most GMM-based clustering approaches tend to
generate more components than necessary in order to bet-
ter fit the data. However, it is found that the CL-MML
can rectify the over-fitting tendency of the compared
methods under such circumstances. This can be explained
by the reason that it takes the separation among compo-
nents into account. Secondly, the proposed method yields
the most accurate results among all the approaches on
these four data sets. This justifies that the proposed ap-
proach can estimate the GMM parameters more properly
than the compared ones.

4 Conclusion

In this paper, by taking the capability of the candidate
GMM to provide a relevant partition to the data into ac-
count, an improved GMM-based clustering approach is
developed for the difficult scenario where the true distri-
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bution of data is against the assumed GMM. The experi-
mental results show that the proposed method is not only
able to rectify the over-fitting tendency of the compared
methods for performing the model selection, but also able
to obtain higher clustering accuracy compared to the exist-
ing methods.
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