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Abstract: The reliability assessment problem for products
subject to degradation and random shocks is investigated.
Two kinds of probabilistic models are constructed, in which
the dependent competing failure process is considered. First,
based on the assumption of cumulative shock, the probabilistic
models for hard failure and soft failure are built respectively.
On this basis, the dependent competing failure model
involving degradation and shock processes is established.
Furthermore, the situation of the shifting-threshold is also
considered, in which the hard failure threshold value
decreases to a lower level after the arrival of a certain number
of shocks. A case study of fatigue crack growth is given to
illustrate the proposed models. Numerical results show that
shock has
meanwhile, the effect will be magnified when the value of the
hard threshold shifts to a lower level.
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or mechanical parts, failures usually result from the
F competition between soft failure (degradation) and
hard failure, and shock processes can speed up both of
the failures. In recent years, studies on competing fail-
ures have been extensively explored; but most of them
assume that the two kinds of failure processes are inde-
pendent of each other'' ™.

In real circumstances, however, there exist correlations
between the degradation process and random shocks. For
example, the degradation process makes the system more
vulnerable to random shocks, and random shocks can ac-
celerate the degradation process. Up to now, different
categories of random shock assumptions have been con-
structed, including the cumulative shock model'™, the
extreme shock model', the mixed model” and the §-

8 .
shock model™ . Moreover, effects of correlations, com-
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peting processes between shocks and degradation have al-
so been studied. Su et al. "' proposed a reliability assess-
ment method considering competing failure based on the
Wiener process. Peng et al. """ developed reliability mod-
els for systems that undergo multiple dependent compe-
ting failure processes,
processes are dependent upon each other due to the impact
from the same shock processes. Investigating both the
Wang et
al. " constructed a system reliability model on competi-
tive failure processes with fuzzy degradation data, which
was evaluated with a multi-state system reliability theory.

In this paper, the reliability analysis is conducted on
the basis of the dependent competing failure process. In
which, hard failure is caused by the shock process, while

in which two kinds of failure

degradation process and the shock process,

soft failure is the result of continuous degradation and ab-
rupt damage from the same process.
shock model is applied for the sake of establishing two
probabilistic models, and the correlation between hard
failure and soft failure is considered. Based on that, relia-
bility is consequently estimated including the situation of

The cumulative

the shifting-threshold value. The case study with sensitiv-
ity analysis implies that the proposed models are in line
with the actual situation, which also demonstrates that the
proposed models can be applied to the components that
endure dependent failure processes.

1 Dependent Competing Failure Process (DCFP)

As shown in Fig. 1, let X(7) be the wear volume of the
continuous degradation by time ¢, and it is monotonically
increased with time. Shock loads will cause additional ab-
rupt damage Y,(i =1, 2,...) and speed up the degradation
process. Soft failure will occur when the overall degrada-
tion, X (7), is beyond the critical strength level H.
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Fig.1 Soft failure process

Jiang et al. "' pointed out that when sustaining shocks,
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components become more susceptible to hard failures.
Thus, the same random shock process can also result in
hard failure. As seen in Fig.2(a), let W, denote the mag-
nitude of the i-th shock (i =1, 2, ...), hard failure occurs
when the cumulative shock load magnitude exceeds the
threshold value D,. The system will fail when either of
the two failures occurs. For most materials,
will gradually decrease with time. Fig.2(b) shows that
the critical strength value decreases from D, to D, after

the arrival of a run of m shock loads.

the strength
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Fig.2 Hard failure process. (a) Fixed threshold; (b) Shifting

threshold

2 Reliability Modeling for DCFP

2.1 Shock process analysis

It is assumed that random shocks arrive according to a
homogeneous Poisson process with rate A. Let N(¢) de-
note the number of shocks until time ¢, then

(/\t)

P{N(1) =i} =22 i=0,1,2... (1)

As shown in Fig.2(a), in the cumulative shock mod-
el, let T be the time that the system incurs hard failure,
and the system will not fail until the cumulative shock
damage exceeds the threshold value D,. Thus,
bility function of the hard failure process can take the
form as

the relia-

N(1)

R,,:P(tsT)zp(ZWi<D,) 2)

Specifically, when the magnitudes of the shocks are in-
dependent identically distributed (i. i. d) random variables
following a normal distribution as W, ~ N(u,, o), the
reliability function can be obtained as

R, =P(1<T) = @( ’”“W) (3)
Oy
where @(+) is the cumulative distribution function of a
standard normally distributed variable.

As shown in Fig.2(b) , the hard failure threshold val-
ue decreases from D, to D, right after the arrival of a run
of m shocks. In such a shifting-threshold situation, the
equivalent reliability function is

N(t)

R, =Pt <T) =P( ZWL<D1,ZW <D,)

(4)

i=m+l

2.2 Soft failure model due to degradation and shocks

Descriptions for gradual degradation, X (¢), make a
great difference in various studies' "', Some researchers
apply the linear degradation path model 6. 12
chastic process can also be employed

Each random shock can cause abrupt damage. The ab-
rupt damage in the overall degradation are measured by

the shock damage sizes as {Y,, Y,,---}.

, and a sto-

The cumulative
damage size due to random shocks until time 7 is given

[10
as- !

N(t)
S(t) = {ZY ifN() >0 s)
0 ifN(t) =0

where N(t) is the total number of shocks to the system
until time 7.

Then the overall degradation of the system including
gradual degradation and shock damage can be expressed
as X, (1) =X(t) +8(t). Soft failure will occur when the
overall degradation is beyond the threshold value H.
Thus, the probability that the component survives is

iP(X(l) +S(t) | N(t) =) -

i=0

P(N(t) =1) (6)

P(X (1) <H) =

In this paper, it is assumed that the magnitude of grad-
ual degradation, X(¢), at time ¢ follows a normal distri-
bution as N(u (1), o (t)). And the shock damage sizes
are also i. i. d variables taking the form as Y, ~ N(u,,
o). Considering the independence of the two random
variables, X, (¢) takes the distribution as N (u (t) +
N(t)u,, o (t) + N(t)o,). Reliability is equal to the
probability that the total damage to the system has not ex-
ceeded the failure threshold. Using Egs. (1) and (6),
the reliability function for the soft failure process can be
obtained as

_ o H - pt)
R.(1) = <p( 05) ) +
= - iy + () \e™ ;
@ (A 7
Z ( Jo(t)? +ia'€, )L! (A2) ()

i=
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2.3 System reliability analysis

2.3.1 Reliability analysis under a cumulative shock
model

Fig.2(a) shows a cumulative shock model; that is to
say, a system is considered to be failed only when the cu-
mulative magnitudes exceed the threshold value D,. Al-
though the two failure processes are dependent for being
affected by the same shock process, it is still reasonable
to assume that they are physically independent of each
other'"’.

vives from failure can be expressed as

Thus, the probability that the component sur-

N(t)

P(X.(t) <H,Y W, <D,)=
k=1
N(t) N(t)

P(X(t) + XY, <H,Y W, <D,)=
j=1 k=1

P(X(t) < HYP(N(t) =0) +

iP( iWk < DI)P(X(t) + 2y/ < H) .
P(N(t) = i) (8)

It is also assumed that the shock process follows the
homogeneous Poisson process described in Section 2. 1.
Based on the specific assumptions of X(7), W,, Y, (i=
1,2,--+), and using Egs. (3) and (7), the reliability
function of the dependent competing failure process can
be obtained as

R(1) = @(H¢;(t§t) Je +

= (D =iy H = () i)y e™
ch( ﬁa:)é( /ﬁ)“(m

(9)

2.3.2 Reliability analysis due to a shifting-threshold

In Fig.2(b) , the hard failure threshold decreases from
D, to D, right after the arrival of m shocks. This kind of
problem was considered by Jiang et al'”’. In their re-
search, a generalized run shock model was given. In this
paper, we propose a different approach for reliability
analysis based on the cumulative shock model. Similarly,
by using Egs. (4) and (7), we can obtain the reliability
that the component survives from failure as

R(t) = P(X(t) < H)P(N(t) =0) +

m

ZP(E W, <D])P(X(t) +iy_/. <H)p(N(t) Z i)+

_iP( S, <D)P(X(0) + ZY <H) P(N(1) = i)
(10)

When the assumptions made in the previous section are
taken into consideration, the specific reliability function
take the form as

R(t) = @(Hia__(ligt) )e_“ +

Dy =iy . (H = (u(t) +iu,) | e™ i
Z@( ﬁa: )cp( /ﬁ )7()@) ‘
D, - i,uw)@(H— (w(t) +iuy) ) %‘(M)i

Jo()? + io'zy

i=

el
i=m+l

x/lTO'W

(11)

3 Numerical Example

In this section, a case study is provided to illustrate the
proposed models in Section 2. This example is based on
the fatigue crack growth data of an alloy'"*’. The loading
cycles are considered to be the loading time f. Informa-
tion about the shocking process is used to demonstrate the
proposed model.

Fig. 3 shows the fatigue crack growth path. We select
13 samples out of a total of 21 samples since the remai-
ning samples are not completed. The least squares method
is employed to evaluate the parameters, and the results
are

w(K) =4.58 x10 °K +0.874 5
o(K) =1.33x10"°K +0.000 8

where K is the number of cycles.

Crack/inch

O = P o e e e e

OO = N W H L NI o
T 1

Cycle/10*

Fig.3 Fatigue crack growth paths of samples

Sizes of random shock loads, W,(i=1, 2,---), which
are measured in units of component life"’' | are assumed to
follow a normal distribution, W, ~N(2, 0.5); the shock
damage sizes take the form as Y, ~ N(0.02, 0.01) for
i=1, 2,---, and the threshold value of soft failure H =2.0
inches (1 inch =25.4 mm) ; the threshold value of hard
failure D, =35 units; and the arrival rate A =0.5 x 10 ~*.
In addition, we assume that m =3, and the lower level of
hard failure threshold value D, =25 units.

According to Egs. (9) and (11), the reliability curves
of the two models constructed in Section 2. 3 are plotted
in Fig. 4, respectively. For Case 1, reliability almost re-
mains at 1 when K <5 x 10* cycles. This is because the
effect of random shocks is not significant and the gradual
wear degradation amount is not large enough to cause any
failure. In the next time period, with the gradual degra-
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dation and random shocks, reliability drops quickly, and
the effect of shocks becomes a significant factor of the re-
liability performance. Eventually, reliability drops to a
quite low level when K >2.5 x 10° cycles. Analysis of
Case 2 can be obtained similarly.

1.0 Degradation without shocks
g' Z ----DCFP with fixed threshold
-°r \v_\\ """"" DCFP with shifting-threshold
0.71 W
z 0.6
5 0.5¢
E 0.4}
0.3
0.2}
0.1F
0 | 0 e g ]
0 1 2 3 4 5
Cycle/10°

Fig.4 Reliability function of different models

In addition, the reliability curve based on degradation
without shocks is also provided in comparison with the
two shock-considering models in Fig. 4. According to the
results, it can be concluded that shocks will accelerate the
failure process, which validates the effectiveness of mod-
els constructed in Section 2. Moreover, when the hard
failure threshold value decreases from D, to D,, failure
will occur sooner.

Fig.5 shows the reliability distributions with different
rates of random shocks in Case 2. A higher arrival rate
will make the reliability drop more quickly. It is reasona-
ble because more intensively frequent random shocks, lar-
ger sizes of shock loads and shock damages will resultant-
ly make a component more vulnerable.

1.0
0.9
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0 1 1

Cycle/10°

Reliability

Fig.5 Sensitivity analysis for A

4 Conclusion

This paper focuses on the reliability analysis of compo-
nents with dependent competing failure processes due to
hard failure and soft failure. Generalized probabilistic
methods based on the cumulative shock model are pro-
posed and two specific models with normal distribution
are obtained. Compared with the degradation process
without shocks, models established in this paper indicate

that random shocks have significant effects on the failure
process. When considering the shifting-threshold situa-
tion, reliability decreases even faster.

The two proposed models only consider one degrada-
tion path. In real situations, components may have multi-
ple degradation measures, and this will be the focus of
our future research.
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