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Abstract: In order to detect whether the data conforms to the
given model, it is necessary to diagnose the data in the
statistical way. The diagnostic problem in generalized
nonlinear models based on the maximum L -likelihood
estimation is considered. Three diagnostic statistics are used to
detect whether the outliers exist in the data set. Simulation
results show that when the sample size is small, the values of
diagnostic  statistics based on the maximum L, -likelihood
estimation are greater than the values based on the maximum
likelihood estimation. As the sample size increases, the
difference between the values of the diagnostic statistics based
on two estimation methods diminishes gradually. It means that
the outliers can be distinguished easier through the maximum
L,-likelihood method than those through the maximum
likelihood estimation method.
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inear regression diagnostics have developed well in
L the past three decades. A comprehensive study on
this topic can be found, for instance, in Refs. [1 —2].
However, there has not been much published work on re-
gression diagnostics for the models outside of linear re-
gression” ™. Only a few papers are related to the diag-
nostics for exponential family nonlinear models'*™ .
Wei'”' described the diagnostics for generalized nonlinear
models systematically in chapter 6.

All the discussion above is based on the maximum like-
lihood method. Standard large sample theory guarantees
that the maximum likelihood estimator (MLE) is asymp-
totically efficient. It means that when the sample is large,
the MLE is at least as accurate as any other estimator.
However, when the sample is moderate or small, the
properties of the MLE may not be very good. So, we
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need a new estimation method, which can make the prop-
erty better.

In this paper, we propose a modified diagnostic method
for a generalized nonlinear model based on the maximum
L,-likelihood estimator' . Diagnostics for regression pa-
rameters and dispersion parameters are considered, and
three kinds of diagnostic statistics are proposed. For small
and modest sample sizes, the proposed diagnostic method
is still available when ¢ is properly chosen. Some simula-
tions are performed to investigate the behavior of the pro-
posed methods for different sample sizes. We also show
that the modified diagnostic statistics method outperform
the classical diagnostic statistics method when the sample
sizes are modest or even small.

1 Generalized Entropy and Maximum L -Likeli-
hood Estimator

The Kullback-Leibler (KL) divergence' is one of the
most popular quantities employed to measure the distance
of a distribution with respect to a “true” distribution.
Consider a ¢-finite measure w on a measurable space (2
and let M be the set of all probability distribution func-
tions f. The expectation with respect to f is denoted by
E,. The KL divergence between two density functions g
and f is defined as

A I) = Eog(F0) = [ tog( L5}t duco
(1)

Note that finding the density g that minimizes A(f | g) is

equivalent to minimizing Shannon’s entropy'""':

H(f|l &) =-E]log g(X) (2)

Definition 1 Let f and g be two density functions;
and the g-entropy is defined as

H,/(f & =-EI[L(g(X))] q >0 (3)
where
u'™ -1 .
Lu) = {l—q g1 (4)
log u ifg =1

The function L, represents a Box-Cox transformation in
statistics. In other fields it is often called a deformed log-
arithm. The above characterization emphasizes the simi-
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larity to the classical Shannon’s entropy: if g—1, then
L,(u)—log(u) and the usual definition of Shannon’s en-
tropy is recovered.

Recently, Ferrari and Yang™ introduced an estimator
inspired by Havrda, and Charvat'"
measures (usually called a-order entropies or g-entropies
in physics), the maximum L -likelihood estimator.

Definition 2 Let X,, ..., X, be an i. i. d. sample
from f(x; 6,), 6, € ®. The maximum Lq-likelihood esti-

mator of @, is defined as

generalized information

6, = ar%erélax;Lq[f(Xi,' 0)] qg >0 (5)
where L is the g-logarithmic function defined in Eq. (4)
with ¢ > 0. The L -likelihood equation is
a n
Y LIf(X;60)] =0 (6)
80 i=1
Note that when the distortion parameter g tends to 1,
L, (- )—log ( + ) and the usual MLE is recovered. In
this sense, the maximum L -likelihood estimation extends
the classic method, resulting in a general inferential pro-
cedure that inherits most of the desirable features of tradi-
tional maximum likelihood, and at the same time gains
some new properties that can be exploited in particular es-
timation settings.

2 Generalized Nonlinear Model

Suppose that the components of ¥ = {y,,---,y, | " are in-

dependent random variables, in which each y, may depend

eXP[ Z, (1 —%){cp[%

on an independent known variable x,(i=1,2,---,n). The
parameters of interest are g = {B,,,8,|" defined in a
subset B of R”(p <n) and the distribution of y, depending
on x, satisfies the following constraint conditions:

g(ﬂ,) :f(-x,"ﬂ)s )’,-~ED(,U«,-,0'2) i=1,2,~~,n
(7)
where g () is a known monotonic link function;
f(+; +) is a known function with an unknown vector pa-

rameter B and a known explanatory variable of g-vector
x;; E(y,) =p, and ED(u,,0”) is the exponential family
distribution, which has the density function in the follow-
ing form as

P09 = expfely, ~b(6) —c(3)] = s(ey) )

e =wp(B) ord, =6,(8)

(8)
where 6, is the natural parameter; and o = ¢ ' is the dis-
persion parameter. According to the property of the expo-
nential family distribution'”’ |, we have

w, = E(y,) = b(gi) ,

From model (8), the log-likelihood of Y for the parame-
ter B and ¢ is usually denoted by

var(y,) = b(6,) (9)

- 1
LB.¢) = X {olvb, =b(0) —c(3)] = s(e,3) }
(10)
Then the Lq-likelihood of Y is

-b(6,) —c(y)] —%S(cp,y,-)}] -1

Lq“(ﬂ,gp) =

Now let B, and ¢, be the maximum L, -likelihood estima-
tors of B and ¢ for the exponential family nonlinear model
(or generalized nonlinear model) (7), which satisfies

L,(B,.¢,) =maxL,(B,e) (12)
3 Diagnostics for Regression Parameter and Dis-
persion Parameter

A fundamental approach of influence diagnostics is
based on the comparison of parameter 8, and ¢, with pa-
rameter estimates B(n and ;D(H that correspond to the so-
called case deletion model (CDM) .

Vi ~ED(/,,L,,,0'2)
g(w) =f(x;58)

This is just model (7) with the i-th case deleted.

To find the influence points, we compute a certain
jdistance" between (B,,0,) and (B, ,¢ ) or B, and
B ;- The latter is often used in practice because if a case

i=1,2,n

J=1.2,n5 j#i (13)

1 -gq, ()

. ; then this must be influential to (8, ,

o,). Here we introduce three kinds of distance which are

very often used in influence diagnostics and can be used
for generalized nonlinear models.
1) Generalized Cook distance

is influential to B, ;

This is a norm of B, — B, with respect to a certain
weight matrix M >0 and defined as

GD, = HBn _B(m ||12v1 = (Bn _BU))TM(Bn _Bm)

It is very natural to choose M =J(f8) , the Fisher infor-
mation matrix of ¥ for 8. Since the Fisher information
matrix of B, is difficult to calculate, we use the observed
information matrix [ -L_(B,,¢,) ] to replace J(B).
So the generalized Cook distance is

GD, = (B, -B.,)"[-L,(B..e.) ] (B, -B.)
(14)

2) Likelihood distance
The likelihood distance is defined as'"’
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LD,(B) =2{L,(B,) -L,(B.,) | (15)

We can calculate LD, directly based on 8, , B, and the
L,-likelihood function L, . Because L, (B,) is the maxi-
mum of L, (B) for all B, which is defined in a subset B
of R”, LD,(B) =0 is always true. LD, means the diversi-
fication of L, (B) , which is removed from the i-th object

before and after.
3) Difference of deviance
The differences of deviance has the form as

ALD = D(B,,) _Dm (B(i))

where D(g) A jdj<yf,uj<ﬂ>>,0<i> B) =

W(B)). d(y, () =21y,

2%y,0,_b(91)

(16)

Zd.i(yj’

JFi

6, -b(6,) —c(y)i+

—c(y) i, AD actually reflects the

differences of the maximum likelihood estimators of ¢ or
¢ under the original model and under the CDM.

4 Numerical Simulations

We obtain the formula to the maximum L, -likelihood

estimators of B and ¢ under Eq. (12) in Section 2. In
Section 3, three kinds of distance, which are used for the
diagnostics, are introduced. Now let us look at a numeri-
cal simulation example for computing diagnostic statis-
tics.

Suppose that the components of ¥ = {y,, -,y | "
independent random variables, in which each y, may de-
pend on an independent known variable x, (i =1,2, -,
n). Assume that data is fitted by a Gamma nonlinear
model'”', that is, y, ~GA(u,,o”). The probability den-

1

’#i
s 0,': _,U/i_ly b(el) = _log( _/Li_]>s C(yi)

are

sity function is presented in Eq. (8) , where ¢” = ¢~
3 1

Bo +BiX;
= -log(y,), s(y,p) = =2 (glogp —logl'(¢)) +
2log y,. Fig.1 is the GD, based on MLE when n =30,50
and 80. Fig.2 is the GD, based on the maximum L -like-
lihood estimator when n =30,50, 80. Fig. 3 is the LD,
based on MLE when n =30,50, 80. Fig. 4 is the LD,
based on the maximum L -likelihood estimator when n =
30,50, 80.
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Fig.1 GD, based on MLE. (a) n=30; (b) n=50; (c) n=80
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Fig.2 GD, based on the maximum Lq-likelihood estimator. (a) n=30; (b) n=50; (¢) n=80
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Fig.3 LD, based on MLE. (a) n=30; (b) n=50; (c) n=80
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Fig.4 LD, based on the maximum L,-likelihood estimator. (a) n=30; (b) n=50; (c) n=80

From the above figures, we can obtain the same strong
impact points through calculating the value about GD, and
LD,. The value of GD, about the strong impact point
which obtains from the maximum L _-likelihood method is
bigger than the value obtained from the maximum likeli-
hood method when the sample size is small. With the in-
crease in the sample size, the difference between them is
small. It means that the maximum L, -likelihood estima-
tion method is more effective than the MLE method when
the sample size is small.

5 TIllustrative Example

We have the formula to the maximum L -likelihood es-
timators of B and ¢ in Section 3 and three diagnostic sta-
tistics in Section 4. Now let us look at an example for
computing diagnostic statistics.

Example 1 Product sales data

These data were given by Whitmore'”' | which is
shown in Tab. 1. We call them the “Produce sales data”
for short. In this dataset, x, represents the projected sales
amounts of the i-th product reported by a market survey
organization and y, is the corresponding actual sales
amounts of a company (i=1,2,---,20). Whitmore sug-
gested an inverse Gaussian fit by using

y, ~IG(Bx], k'x") i=1,2,--,20 (17)

that is E(y,) =u, =Bx], var(y,) =o; V(u,) , where o;°
= kx! and V() =u.. For ease of calculation, Wei''' set
p=0. In this case, o; =« ' for all i. Then (17) be-
comes y, ~ IG(Bx), k') which is an inverse Gaussian
nonlinear model with w1, =Bx] and var(y,) = o u, (o =
k~'). We obtain the maximum L, -likelihood estimators
from Eq. (12) directly, that is g, = 1. 181 3, k, =
6543.9, 5, =0.987 3.

Then, we obtain the values of the diagnostic statistics
(see Tab.2).

All the results indicate that case 10 may be an outstand-
ing outlier and the influence of case 20 is also obvious.
Through the comparison between our results and the diag-
nostic results obtained through MLE'"”’ | we find that No.
10 and 20 are two strong impact points, and the value of
GD; and LD, using the maximum L -likelihood estimation

method is greater than the value using the MLE method.
It means that the result we arrived at is more significant.
So it is feasible to diagnose using the maximum L -likeli-
hood method.

Tab.1 Product sales data

i X Vi i X; Vi
1 5950 5673 11 3534 3659
2 2641 2565 12 1965 2182
3 1738 1839 13 1182 1236
4 667 918 14 613 902
5 610 756 15 549 500
6 527 487 16 353 463
7 331 225 17 290 257
8 253 311 18 193 212
9 156 166 19 133 123
10 122 198 20 114 99

Tab.2 Some diagnostic statistics for product sales data

i GD, LD, A;D
1 0.0256 0.0252 1.8337 x107°
2 0.026 4 0.0258 3.4584 x10°
3 0.0258 0.0254 1.3374 %1077
4 0.0558 0.0630 8.4938 x10 7>
5 0.0334 0.033 4 2.7548 x10 73
6 0.038 4 0.0326 5.1298 x10 73
7 0.704 4 0.6225 6.7106 x 10 ~*
8 0.0382 0.036 3 4.6510%x10°°
9 0.0346 0.0322 1.1202 x10 7
10 15.839 4 16.67717 1.6071x1073
11 0.0256 0.0253 2.1653 x1077
12 0.0259 0.0255 6.286 6 x 1077
13 0.026 1 0.0256 8.7287 x 1077
14 0.087 4 0.1102 1.5222 x10*
15 0.0407 0.0340 5.7951x107°
16 0.0502 0.051 1 8.9510 x10 >
17 0.0590 0.0542 1.546 9 x 10 ~*
18 0. 0262 0.0259 2.2318 %1077
19 0.637 1 0.346 6 2.7002 x 10 ~*
20 3.7902 1.467 3 6.1232x10°*

6 Conclusion

In this paper, we consider the diagnostics of general-
ized nonlinear regression models. Three diagnostic statis-
tics and a new estimation method, the maximum L -like-
lihood estimator, are introduced. Through the value of
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the diagnostic statistics, we can make a decision of
whether the individual point of the data is a strong impact
one or not. By comparing the results obtained from the
maximum likelihood estimator and the maximum L -like-
lihood estimator, we find that the method of the maxi-
mum L -likelihood estimation is more effective when the
sample size is small. When the sample size is bigger, the
values about the diagnostic statistics are almost the same.
In other words, the performance of our proposed method
is equivalent to that of the classical diagnostic method for
large sample sizes. The same conclusion can also be ob-
tained from the example in Section 5.

This paper discusses some diagnostic problems for the
generalized nonlinear model by using the maximum L, -
likelihood estimation method and compares the results
with those of the classical diagnostic method. However,
consistency and asymptotic normality of the maximum L -
likelihood estimation for the generalized nonlinear model
have not been proved, which is obviously of great signifi-
cance. Thus, more research on this issue will be valuable
and we believe this is an interesting direction for further
exploration.
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