Journal of Southeast University (English Edition)

Vol. 29, No. 2, pp. 170 — 174

June 2013  ISSN 1003—7985

Gross errors identification and correction
of in-vehicle MEMS gyroscope based on time series analysis

Chen Wei

Li Xu

Zhang Weigong

(School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract: This paper presents a novel approach to identify and
correct the gross errors in the microelectromechanical system
(MEMS) gyroscope used in ground vehicles by means of time
series  analysis. characteristics ~ of
autocorrelation function ( ACF) and partial autocorrelation
function ( PACF),
average (ARIMA) model is roughly constructed. The rough
model is optimized by combining with Akaike’s information
criterion (AIC), and the parameters are estimated based on the

least squares algorithm. After validation testing, the model is

According to the

an autoregressive integrated moving

utilized to forecast the next output on the basis of the previous
measurement. When the difference between the measurement
prediction exceeds the defined threshold, the
measurement is identified as a gross error and remedied by its

and its

prediction. A case study on the yaw rate is performed to

illustrate the developed algorithm. Experimental results
demonstrate that the proposed approach can effectively
distinguish gross errors and make some reasonable remedies.
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integrated

n order to cope with the GPS failure within high-

building areas, culverts and mountain valleys, the ve-
hicle integrated navigation based on multi-sensors has
been developed rapidly in recent years'' ™. As one of the
key sensors in the integrated navigation system, the gyro-
scope is extensively studied by plenty of companies and
research institutes, leading to a drastic improvement in
stability and reliability. The novel MEMS gyroscope,
with the advantages of low cost, compact size, light
weight and high reliability, has obtained a broad applica-
tion in vehicle integrated navigation and automotive tes-
ting[“]. However, due to MEMS fabrication imperfec-
tions and environmental variations, the current MEMS
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gyroscope is always subject to white noise and constant
drift random errors'”’. In addition, the abnormal data will
inevitably contaminate MEMS gyroscope output because
it is susceptible to vibration, temperature changes and
other external factors during the running of the vehicle.
Therefore, for the purpose of eliminating the adverse
effects on subsequent multi-sensor fusion and test results,
it is of great importance to distinguish the gross errors and
correct them reasonably.

Traditionally, there are four most common rules to
identify gross errors, i.e., the 3§ criterion, the Grubbs
criterion, the Chauvenet criterion and the Dixon criteri-
on'”". If the specific critical factors and confidence lev-
els are not considered, the algorithms of these four crite-
ria can be described as follows: First, it is required to
calculate the mean x and standard deviation § according to
the original data X,, X,, ..., X,. If | X, —x| >k5, X, is
thought to be a gross error and replaced with the average

n*

or median of several data around X,. Obviously, the
aforementioned x and & have already been contaminated
by potential gross errors in the process, frequently leading
to misjudgments in some special cases. Besides, these
methods purely tackle gross errors in the view of data pro-
cessing without referring to the system and error charac-
teristics, leading to poor performance when applied to the
MEMS gyroscope. Meanwhile, the gross error identifica-
tion and correction of an in-vehicle MEMS gyroscope re-
main open for research and the related literature is rare to
the best knowledge of the authors.

In view of this, a novel approach based on time series
analysis is introduced to identify and correct the gross er-
rors of MEMS gyroscopes. When the difference between
the measurement and its prediction calculated using the
optimal model exceeds the defined threshold, the meas-
urement is deemed as a gross error and remedied with the
help of its prediction. Experimental results show that the
proposed algorithm can achieve a high performance.

1 Time Series Analysis Models

1.1 ARMA model

The common method of modeling time series is to con-
struct an autoregressive moving average process ( AR-
MA). Theoretically, this model derives from the autocor-
relation analysis of time series, which not only involves
various degrees of correlations over time for inertial sys-
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tems, but also considers the random interferences, ac-
cordingly gaining high accuracy for short-term predic-
tions'""™"! .

It should be emphasized that the time series must be
generated by a zero-mean stationary random process when
modeling by the ARMA model. Therefore, the necessary
statistical tests should be carried out in advance to ensure

the raw data suitable for further analysis.
1.2 ARIMA model

In the actual application, the vast majority of the time
series are definitely non-stationary. For the sake of mod-
eling this kind of time series, Box and Jenkins brought
forward the autoregressive integrated moving average
(ARIMA) model. Generally speaking, ARIMA (p, d, q)
consists of AR (p), MA (¢g), and ARMA (p, g) mod-
els. In the context of this approach, the non-stationary
series are required to perform d times differences until
they transform into a stationary series before applying
ARMA (p,q) .

ARMA (p, g) is the most widely used model in the
field of time series analysis. For a zero-mean stationary
series y(k)(k=1,2, ..., n) with variance &, it is referred
to as an ARMA (p, g¢) model if it can be expressed as

y(k) =, y(k=1) +,y(k=2) +... +¢,y(k-p) +

(k) —0,e(k-1) -0,e(k-2) —... -0,e(k-q)
(1)
where ¢, ¢,, ..., ¢, and 6,, 6,, ..., 6, are parameters of

autoregressive component and the moving average compo-
nent, respectively; e(k), e(k-1), ..., e(k—-gq) are
Gaussian white noise series with mean zero and variance
§°. In addition, the AR (p) and MA (g) models can be
viewed as special variants of ARMA (p, ¢) when the pa-
rameter p =0 or g =0.

2 Method

The approach proposed in this paper can be summa-
rized as the following procedures.

2.1 Checking stationarity

As mentioned above, stationarity is the basic require-
ment when applying the ARMA (p, g) model to a time
series. There are several methods which account for
whether a series is stationary or not. The most popular is
the augmented Dickey-Fuller test ( ADF), which is ap-
plied to test the stationarity of the yaw rate series in this
paper. According to Box and Jenkins, if a time series is
not stationary, this time series need to be differentiated

before utilizing ARMA (p, q).
2.2 Identifying ARMA (p, q) model

Identification of models usually relies on the analysis of
the autocorrelation function ( ACF) and the partial auto-

correlation function ( PACF). While the autocorrelation
function measures the correlation between values in a time
series separated by N, which represents the number of
lags between these data, the partial autocorrelation func-
tion provides an indication in determining the number of
lags in the AR model. Tab.1 summarizes a rough guide-
line for initial model identification.

Tab.1 Model identification using ACF and PACF

Type AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off after lag g Tails off
PACF  Cuts off after lag p Tails off Tails off

With the help of ACF and PACF, both p and ¢ can be
roughly acquired. However, in most cases, more than
one model will be accepted by the rule. To choose the
best one to describe the raw data, model comparison is
usually examined by Akaike’s
(AIC). The AIC rule serves as a criterion for assessing
the goodness of model fitting, and a smaller AIC value

information criterion

normally corresponds to a better model fitting for a given
series. In addition, high order models are discouraged.

2.3 Estimating parameters

In this paper, the least squares algorithm is introduced
to estimate ¢,, ¢,, ..., ¢, and 6, 6,, ..., 0

-
2.4 Diagnosing models

In order to test whether the selected model fits the data
well, it is necessary to diagnose the model. If the model
fits well, the residuals of the model should behave as
white noise, otherwise the model needs to be improved.
The residual ACF and PACEF are tools for model diagnos-
tic checking. If the residual ACF and PACF indicate no
significant spikes, the chosen model is in goodness of

model fitting.
2.5 Gross errors identification and correction

After the above steps, an appropriate model ARIMA
(p,d, q) is constructed and used to tackle gross errors.
Suppose that the obtained ARIMA (p, d, g) model can be
expressed as

Yk = y(k=1) +p,y(k=2) +... + P, y(k-p) +
e(k) —6,e(k-1) -6,e(k-2) —... -0,e(k-¢q)

(2)

where y(k) is the predication of y(k). If | y(k) —y(k) |
=0, y(k) is identified as abnormal data and replaced by
the median of y(k-p), y(k-p+1), ..., §(k). For the
application in the yaw rate, the threshold @ is set to be 3
rad/s.

3 Case Study

In order to verify the proposed approach, the yaw rate
data collected by the ZX-VG MEMS gyroscope is studied
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in this paper.

Fig. 1 describes the original data y(k) (k=1, 2, ...,
20 000) with a sampling interval of 20 ms. From Fig. 1,
it is obvious that the data has significant increasing trends
at certain stages, which will cause inevitable non-station-
arity.
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Fig.1 Original yaw rate data

In order to facilitate modeling, the first 400 data,
namely y(#)(t=1,2,...,400), are chosen as a sample to
research. According to Box and Jenkins, the preliminary
difference should be performed as

x(1) =y(t+1) —y(1) (3)

Afterwards, the ADF test is used to check the process sta-
tionarity and the results are shown in Tab.2. The null hy-
pothesis is that the series has a unit root. In Tab. 2,
-3.814 591, -3.082 001 and —2.716 303 are the test
critical values under the significance level of 1%, 5%
and 10%, respectively. The augmented Dickey-Fuller
test statistic is —4.305 675, which is lower than the criti-
cal value under the significance level of 1% . Therefore,
the null hypothesis is rejected and the series x(¢) is sta-
tionary. The mean value of x(7) is —0.000 172, so x(¢)
approximates a zero-mean sequence.

Tab.2 Stationarity test

The level of test t P
ADF -4.305 675 0.029 0
1% -3.814 591
5% —-3.082 001
10% -2.716 303

After obtaining the zero-mean stationary series, the
next step is to identify the ARMA (p, ¢) model. As men-
tioned above, time series modeling is based on extracting
information from ACF and PACF. The ACF and PACF
of x(t) are plotted in Fig. 2. As shown in Fig. 2, the
ACF exceeding the confidence interval occurs in the first
lag, whereas the PACF occurs in the first two lags. Ac-
cordingly, the candidate models are ARMA (1, 1) and
ARMA (2, 1) for estimation. In light of the AIC rule,
the model ARMA (1, 1) gains the smaller AIC value,
and it is chosen as the best fitted model for data interpre-
tation.

By means of the least squares algorithm, the parameters
¢, and @, are calculated and they are equal to —0.224 8
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Fig.2 The ACF and PACF of x(f). (a) ACF; (b) PACF
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and -0.449 7, respectively. Namely, the selected AR-
MA (1,1) is

x(t) = =0.224 8x(t-1) +&(t) +0.449 Te(t-1)
(4)
where g(t) and g(¢—1) are the Gaussian white noise se-

ries with mean zero and variance 0. 002 4,
same as x(1).

i. e., the

In order to examine whether the selected model fits the
data well, it is necessary to diagnose the model. Define
residual r(7) as

r(1) =%(1) - x(1) (3)

The ACF and PACF of residual r(#) are shown in Fig.
3. As illustrated in Fig. 3, the residual ACF and PACF
indicate no significant spikes, which means that the AR-
MA(1, 1) is in goodness of model fitting.
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Fig.3 The ACF and PACF of residual. (a) ACF; (b) PACF

Finally, replacing x(¢) with Eq. (3), the ARIMA(1,
1,1) model of y(k) can be obtained as

y(k+1) =0.775 2y(k) +0.224 8y(k - 1) +
s(k) +0.449 7g(k -1) (6)

Then, it can be utilized to identify and correct the
gross errors of the yaw rate. Initially, this paper assumes
¥(k) as the prediction of y(k) and set (1) =y(1), $(2)
=y(2). Starting from k=2, y(m—-1), y(m) and y(m +
1) are extracted from y(k) in order every time. Accord-
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ing to Eq. (6), y(m +1) can be written as

Y(m+1) =0.775 2y(m) +0.224 8y(m —1) +
e(m) +0.449 Tg(m -1) (7)

If \y(m) —y(m) \ =3 rad/s, y(m) is identified as ab-
normal data and replaced by the median of y(m - 1),
y(m) and y(m +1). The corrected yaw rate and original
data are shown in Fig. 4.
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Fig.4 Comparison of original data and corrected data. (a) The
general drawing; (b) Partial enlarged detail of the general drawing with
one gross error; (c) Partial enlarged detail of the general drawing with
ten successive gross errors

Fig. 4 reveals that the approach proposed in this paper
can effectively distinguish the gross errors and correct
them reasonably. According to Figs.4(b) and (c), the
method is not only suitable for one gross error but also for
successive gross errors.

4 Conclusion

This paper proposes a novel approach to identify and
amend the gross errors of an in-vehicle MEMS gyroscope
based on time series analysis. The optimal ARIMA model
is constructed combined with AIC and the analysis of
ACF and PACF. Through analyzing the case of the yaw

rate, the application of time model analysis is appropriate
and performs very well, which demonstrates that the pro-
posed method is suitable for gross error identification and
correction.
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