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Abstract: In order to optimize the signal control system, this
paper proposes a method to design an optimized fuzzy logic
controller ( FLC) with the DNA evolutionary algorithm.
Inspired by the DNA molecular operation characteristics, the
DNA evolutionary algorithm modifies the corresponding
genetic operators. Compared with the traditional genetic
algorithm ( GA), the DNA evolutionary algorithm can
overcome weak local search capability and premature
convergence. The parameters of membership functions are
optimized by adopting the quaternary encoding method and
performing corresponding DNA genetic operators. The
relevant optimized parameters are combined with the FLC for
single traffic  signal
experiments shows the better performance of the FLC with the
DNA evolutionary algorithm optimization. The experimental

intersection control.  Simulation

results demonstrate the efficiency of the proposed method.
Key words: DNA evolutionary algorithm; genetic algorithm
(GA); fuzzy control; traffic signal control

doi: 10. 3969/j. issn. 1003 —7985.2013.02.017

raffic signal control has attracted considerable inter-
T est because road traffic congestion is a critical prob-
lem. The fuzzy logic theory has played an important role
in adaptive traffic signal control in recent years. Pappis
et al. 'Y first proposed an implementation of a fuzzy logic
controller (FLC) in a single intersection of two one-way
streets in 1977. Trabia et al. " developed a fuzzy logic
controller for an isolated four-approach signalized inter-
section which mainly determines whether to extend or ter-
minate the current signal phase. Murat and Gedizlioglu"”’
developed a fuzzy logic multi-phased signal control model
for isolated signalized intersections. In addition, the use
of the optimized method has demonstrated its usefulness
in traffic signal distribution strategy. Srinivasan'* presen-
ted a real-time traffic signal control method based on neu-
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ral networks. Anderson et al. " proposed a GA-optimized
fuzzy logic controller traffic signal control. Garcia-Nieto
1. " utilized the particle swarm optimization ( PSO)
method for traffic light scheduling. Dimitriou et al.'”

et a

presented an adaptive hybrid fuzzy rule-based system
(FRBS) approach.

However, the DNA evolutionary algorithm can over-
come the drawbacks of the GA, such as weak local search
capability and premature convergence'™”’
we propose a fuzzy logic controller for traffic signal con-
trol and utilize the GA and the DNA evolutionary algo-
rithm to optimize FLC membership function parameters,
respectively. Then the optimized FLC is applied to traffic
signal control.

. In this paper,

1 Fuzzy Logic Controller for Signal Control

In this paper, we consider a single traffic junction with
multiple lanes. The number of street lanes ranges from 1
to 3, as shown in Fig. 1.
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Fig.1 A single traffic junction with multiple lane

As shown in Fig. 1, each group of traffic loop detectors
consists of two sensors, one at the downstream stop line
for recording the departure vehicles and the other at the
corresponding intersection upstream for estimating the ar-
riving vehicles. For multiple lanes, drivers tend to switch
to a shorter queue while approaching the junction, so the
differences among queue lengths of all the lanes in the
same direction are usually small. If the north-south direc-
tion is in the green phase, then we can let

G =max {queue lengths of all lanes in north and
south directions}

R =max {queue lengths of all lanes in east and
west directions }

At the beginning of every phase, G and R are meas-
ured, which are the two input variables of the fuzzy logic
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controller. We select the green time of the current phase
T as output variable. Without loss of generality, we adopt
the same Gaussian membership function of which the uni-
verse of discourse is (0, 12).

All these variables are divided into seven fuzzy lan-
guage partitions: very short( VS), medium short( MS),
short(S), medium(M), long(L), medium long( ML),
and very long( VL). The rule base is shown in Tab. 1.

Tab.1 Fuzzy inference rule base

R

¢ VS MS S M L ML VL
VS VS VS VS VS VS VS VS
MS MS MS MS MS MS VS VS

S S S S S S MS MS

M M M M M M S MS

L L L L M M S MS
ML ML ML ML L L M S
VL VL VL ML ML L L

2 Optimization Process with DNA Evolutionary
Algorithm

2.1 DNA evolutionary algorithm and encoding prin-
ciple

The DNA evolutionary algorithm adopts the character-
istics of the DNA model, which encodes chromosomes
and amends genetic operators with the DNA nucleotide
mechanism. The DNA algorithm has several kinds of op-
erators as follows:

1) Selection operator. Elitism is used with tournament
selection in attempt to guarantee the best individual to be
replicated into the next generation.

2) Translocation operator. This operator makes the
subsequence of the DNA sequence transfer to a new loca-
tion. For example, let the original DNA sequence be X =
XX, X, X,X,, where X,(i=1,2,...,5) is the subsequence
of the DNA sequence (X). Then the new sequence after
the translocation operation becomes X = X, X, X, X, X|.

3) Transformation operator. This operator makes the
segments of the DNA sequence exchange their locations.
For example, the sequence X after a transformation opera-
tion which exchanges X, with X, becomes X =
XX, X, X,X,.

4) Permutation operator. One subsequence of the DNA
sequence is permutated by the other subsequence. For ex-
ample, when X, subsequence from the same or other
DNA sequence is selected to replace X,, the new se-
quence is X = X, X, X, X)X, .

5) Mutation operator. In order to maintain the popula-
tion diversity, we employ the shifty probability in differ-
ent evolution stages. At the beginning of the evolution
stage, we want to have a large probability in the high bit
position so as to obtain a large searching space. At the
end of the evolution stage, the large probability in the
low bit position is necessary for acquiring more accurate

results. So there are two kinds of mutation probability P,
and P,

b
P, = ‘ 1
VTN Y explaCg - g0 ] ()

bl
_a‘+1+exp[—a(g—go)] (2)

P, =
where a,, b,, g, g, and a denote the initial mutation proba-
bility, the range of the mutation probability, the evolu-
tionary generation, the generation where the great change
of mutation probability occurs, and the speed of change,
respectively.

2.2 Procedure of DNA genetic algorithm

On the basis of the DNA encoding principle and corre-
sponding genetic operators, for the Gaussian membership
function, two input variables and one output variable are
encoded in a 42 real gens chromosome by using the qua-
ternary encoding method. The procedure of the DNA ge-
netic algorithm is as follows:

Step 1 Initialize population N and evolutionary gener-
ation G_, and encode the individuals using the DNA enco-
ding method.

Step 2 Set the fitness function and calculate the
individuals’ fitness values.

Step 3
from the population so as to select the individuals of high
value and reproduce similar individuals.

Step 4
random number with the range of [0, 1].
number i > p, =0. 5, implement the translocation opera-
tor, otherwise implement the transformation operator.

Step 5
operator. On the basis of the Watson-Crick complementa-
ry principle, produce N corresponding complementary in-

Implement the selection operator with elitism

Utilize the permutation operator and set the
If the random

Calculate P,, P, and implement the mutator

dividuals after the mutation operation. Then the popula-
tion is enlarged with 2N individuals.

Step 6
tionary process is completed, end this algorithm. Other-
wise, repeat from step 2 to step 6 until the final optimized
solutions are found.

If the criterion is met or the loop of the evolu-

3 Simulation
3.1 Queue length and average delay model

In order to illustrate the validity of the methods for traf-
fic signal control, the intersection queue lengths and the
In this
model, assume that the arrival time of vehicles is ran-
dom. In each successive time unit (1 s), if a vehicle ar-
rives during the n-th unit interval, let g, =1. Otherwise,

average delays are usually selected as criteria.

let g, =0. V, denotes the number of vehicles that cannot
V, denotes the
number of vehicles that arrive during the red phase. Then

leave during the previous green phase.
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the queue lengths of the red phase and the green phase af-
ter the n-th time unit Q, O, are depicted as

o <[5 >
V.ﬁiqi
QG—z” p }_m} (4)

where p is the number of lanes; z =1 if [7

sn is nonnegative, otherwise z =0.
The total delay time of the vehicles at the red phase of
this cycle is

Z(VG+Z('I1) (5)

J=1 i=1
Then the total waiting time at the green phase of this
cycle can be described as

n

ZZ( Ve + 2/,% —Sjp) (6)

J=1 i=1

D, =

j
where z=1if V, + Z q; — sjp is nonnegative, otherwise

i=1
z=0; s denotes the number of vehicles that leave per sec-
ond.
Therefore, during the /-th cycle the total delay time ex-
perienced by vehicles and the average delay time are

D' =D, + D, (7)
DI
1 -1 (8)

g+r+g ™+

dl

where g' and #' are the numbers of vehicles that arrive at
the green phase and the red phase in the [-th cycle, re-
spectively; g’ 'and 77! are the numbers of vehicles that
stay at the green phase and the red phase in the previous
cycle, respectively.

3.2 Simulation results
In our optimization process, the aim is to minimize the
average delay time in the total cycle; i.e., f= min z d.
I=1

The basic domains of G(R) and T are selected as [0, 30]
and [5,55], respectively.

According to the queue length and the average delay
model, simulation experiments are constructed by varying
the arrival rates of vehicles. Different control methods are
compared, which include the fixed-time control, the FLC
that does not use any optimization technique, the GA op-
timized FLC (GA_FLC), and the FLC with DNA opti-
mization( DNA _FLC). Simulation results are shown in
Tab. 2 and Fig. 2.

From Tab. 2, we can see that the delay time of FLC

with the DNA genetic algorithm optimization is signifi-
cantly shortened compared with the other methods at dif-
ferent vehicle arrival rates. Especially, when the arrival
rate of vehicles is high, the difference of these methods is
bigger. Fig.2 compares the total queue length for differ-
ent arrival rates of vehicles given by different methods.
Especially, from Fig.2(b) we can see that when the traf-
fic becomes heavy, the method with the DNA optimiza-
tion can let vehicles evacuate instead of gathering in other
methods. It illustrates that the FLC with the DNA genetic
algorithm optimization shows more superiority when traf-
fic flow is heavy.

Tab.2 Results of simulation

Arrival rate of vehicles Delay time/(s - vehicle ™!)

NS I'w.g Fixed cycle FLC GA_FLC DNA_FLC
0.1 0.1 4.6992 3.4668 3.2584 3.0758
0.1 0.2 6.5807 5.1575 4.906 8 4.5856
0.1 0.3 9.9353 8.4023 6.2528 6.1121
0.1 0.4 13.873 8 12.6363 11.4382 11.1958
0.2 0.2 6.1719 4.8031 4.5897 4.3583
0.2 0.3 9.767 3 8.1234 6.1244 6.0194
0.2 0.4 13.8254 12.2984 10.876 1 10.4107
0.3 0.3 9.8693 8.3664 6.1509 5.497 4
0.3 0.4 13.9090 12.2723 10.8395 9.9745
0.4 0.4 14.2553 13.0471 12.1629 11.0865
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Fig.2 Queue length in different arrival rates under four meth-
ods. (a) rys =0.2, rywp =0.2; (b) rys =0.3, ryp =0.3; (¢) rys
=0.3, ryp =0.4; (d) ryg=0.4, ryp =0.4
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4 Conclusion

In this paper, we design a fuzzy logic controller based
on the DNA evolutionary algorithm and apply the opti-
mized fuzzy logic controller to simulate single intersection
signal control. The DNA evolutionary algorithm inherits
the advantages of the GA and adds DNA molecular opera-
tion characteristics. It presents better searching capability
and maintains diversity of the population. Compared with
the fixed-time controller, the traditional fuzzy logic con-
troller and the fuzzy logic controller optimized by the
GA, the proposed fuzzy logic controller shows better per-
formance in the distribution of green/red time.
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