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Abstract: A linear forest is a forest whose components are
paths. The linear arboricity la (G) of a graph G is the
minimum number of linear forests which partition the edge set
E(G) of G. The Cartesian product G[_]H of two graphs G and
H is defined as the graph with vertex set V(G[1H) = {(u, v) \
ueV(G), ve V(H)} and edge set E(G[1H) = {(u, x) (v,
y) |u=v and xy e E(H), or uve E(G) and x =y}. Let P,
and C,,, respectively, denote the path and cycle on m vertices
and K, denote the complete graph on n vertices. It is proved

n+2
2

n+1

that la(K, [IP,) =

for m=2, la(K,[]C,) =

s

n+m-1
2

these graphs into linear forests are given in the proofs.

Furthermore, the linear arboricity conjecture is true for these

classes of graphs.
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and la( K, [K,,) =

m

}. The methods to decompose

n this paper, all the graphs are simple, finite and un-

directed. For a real number x, [x] is the least integer
not less than x and | x| is the largest integer not larger
than x. Let G be a graph. We use V(G), E(G) and
A(G) to denote the vertex set, the edge set and the maxi-
mum degree of G, respectively.

A linear forest is a forest whose components are paths.
The linear arboricity la(G) of G defined by Harary'" is
the minimum number of linear forests needed to partition
the edge set E(G) of G.

Akiyama et al. " conjectured that la(G) =[(A(G) +
1)/27] for any regular graph G. They proved that the con-
jecture is true for complete graphs and graphs with A =3,
477 Enomoto and Péroche' proved that the conjecture
is true for graphs with A =5, 6, 8. Guldan"™ proved that
the conjecture is true for graphs with A =10. It is obvious
that la( G) =[A(G)/2 | for every graph G and la(G) =
[(A(G) +1)/27] for every regular graph G. So the con-
jecture is equivalent to the following linear arboricity con-
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jecture (LAC)"™. For any graph G, [A(G)/27]<la(G)
<[(A(G) +1)/27].

Akiyama et al. " determined the linear arboricity of
complete bipartite graphs and trees. Martinova'® deter-
mined the linear arboricity of the maximal outerplanar
graphs. Wu et al. "™ proved that the LAC is true for all
the planar graphs. Wu'"' also determined the linear arbo-
ricity of the series-parallel graphs. Some other researches
on linear arboricity can be found in Refs. [10 —12].

The Cartesian product of two graphs G and H (or sim-
ply product), denoted by G[1H, is defined as the graph
with vertex set V(GJH) = {(u, v) | ue V(G), ve
V(H) } and edge set E(GLJH) = {(u,x)(v,y) | u=v and
xye E(H), oruwe E(G) and x=y}. Let P, and C,, re-
spectively, denote the path and cycle on m vertices and
K, denote the complete graph on n vertices. In this paper,
we determine the linear arboricity of K, []P,, K, [C,
and K, [1K,,.

The following lemmas are useful in our proofs.

m?

Lemma 1 If H is a subgraph of G, then la(H) <
la(G).
Lemma 2 la(G[JH) <la(G) +1a(H).

Lemma 2 holds by the definition of the linear arboricity
and the Cartesian product of graphs.

Lemma 3" la(K,) =[n/27].
For n=3, the complete graph K, is de-
composable into edge disjoint Hamilton cycles if and only

3
Lemma 4"

if n is odd. For n=2, the complete graph K, is decom-
posable into edge disjoint Hamilton paths if and only if n
is even.

14
Lemma 5'"  Let V(K,,) = {v,, v, ..., v,, , }. For 0
<is<n-1, put
Fo=vo Vi iVan 1 eiVasiVanasio Va1 2V s

where the indices of v;’s are taken modulo 2n. Then F,
F,..F
is decomposed into edge disjoint Hamilton paths F,
F,,..F

are disjoint Hamilton paths of K, ; i.e., K,,

n-1

n—-1°

1 la(K,00P,)

Let V(K,) ={u, v, v;, ..., v, ,} and V(P,) = {y,
Y, --» ¥._, }. For convenience, we denote any vertex
(x,y,) e V(K,[OP,) by x”. For afixed j (j=0,1, ..., m
—1), we use K to denote the complete graph induced

B L0 0 o
by {u”, v/, vi",...,v],}.
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The following lemma deals with the decomposition of
the complete graph K,

Lemma 6 E(K,
matching of order n.

Proof Let V(K,,,,) ={u, vy, v,, ..
isn-1, put

n+1°

) =nP, ., UM, where M, is a

n+1

w V1 }. For0<

Fi=v, Vi Va1 iiVasiVanawieo Y

° n+l+ivn+i

where the indices of v;’s are taken modulo 2n. Then, by
Lemma 5, the complete graph K, ., \{u} is decomposed

n+1

into n disjoint Hamilton paths: F, F,, ..., F,_ ,. For 0<
isn-—1, let e, be the n-th edge of F, and M, = {e,, e,,
w.oe,_}. Thene, =v, [0V, (o fori=0,1,...,n-1

and M, ={v,v,, V\V, 15 -.es V, V5, }. Clearly, M, is a
matching of order n. For each 0 <i<n -1, by deleting
e, from F, and adding two edges uv,, uv,,, to F,, we ob-

tain a path on 2n + 1 vertices. The n paths obtained in

n-1

this way together with M, form a decomposition of K,

n+1

as claimed in the lemma.

Theorem 1 la(K,[JP,) = ntl for m=2.
n+l]| .

Proof If m =2, then la(K,[]P,) = 5| since K,
1P, is n-regular. If m=3, then la(K,[P,) = %} =
n+l

>t where A =A(K,[JP,). We now prove the reverse
inequality. If n is even, then la(K,[JP,) <la(K,) +
la(P,) = % +1= n;—l by Lemmas 2 and 3. Thus The-

orem 1 holds for even n.
Now suppose that n is odd. Let n =2k +1, where k=
1. ForO0<i<k-1and0<j<m -1, put

0 _ L, ) )] ) ) ) )
Fi _v0+ivl+ivzk—l+iv2+i v2k—2+i"'vk+l+i vk+i

where the indices of v\” ’s are taken modulo 2k. Then by
Lemmas 4 and 5, for 0<j<m -1, K is decomposed
into k edge disjoint Hamilton cycles C¥ =u” FY u" (i =
0,1,....k=-1).

Let x”y” be the k-th edge of F” and H” = C \
{(xy?} for 0<i<k-1and 0<j<m - 1. From the
proof of Lemma 6, each complete graph K can be de-
composed into k edge disjoint Hamilton paths H.”, H\”,
..y H”, and a matching M{” = {x" y{, x\"y\", ...,
vl

Let N, = {x” x/*" |j=1,3,...,s}, where s=m -2 if
m is odd and s =m -3 if m is even; and N, = {y"y}"*" |
j=0,2,...,t}, where t=m -3 if mis odd and t =m -2
if m is even.

Let L, = (U} H”) UN, UN, for 0<i<k-1. Then
L. L, ...
[1P,. After we take away these Hamilton paths from K,
[]P,, the remaining edges form a linear forest. Thus,

, L, , are k edge disjoint Hamilton paths of K,

n+l
2

la(K,[JP,) <k + 1 :”% +1=

. This completes

the proof.
2 la(k,0C,)

n+2
2

Proof Since K, []C, can be decomposed into a K,

n

[P, and a matching of size n, we have la(K,[]C,) <

Theorem 2 la(K,[]C,) =

la(K,00P,) +1 =1

+ 1 by Theorem 1. On the other

hand, since K,[]C,, is (n + 1)-regular, la(K,[]C,) =

m

nr L1l m42) 0 s odd, then la(K,(1C,) <"
2 2 n m 2
n+2

. Therefore the theorem holds for odd n.

Now we consider the case that n is even. Note that
n

la(K,[0C,) = 2, we only need to show that K, []C,,

+
2
n+2

can be decomposed into linear forests. Let n =2k,

where k=1. Let V(K,) = {v,, v, ..., v,,_, } and V(C,)

={Yp> ¥y» ---» ¥,,_, }- For convenience, we denote any
vertex (v, y;) e V(K,[JC,) by v/ For a fixed j (j =0,
l,....,m-1), we use K to denote the complete graph

induced by {v, v\, ...,v?_/}. By Lemma 5, for 0 <j

<m -1, each K can be decomposed into k edge dis-
joint Hamilton paths Ff:”(i =0,1,...,k-1), where

R )

and the subscripts are taken modulo 2k.
For i=0,1,...k-1, let L, =( U/ F")u{v"v"}
U "2y ey Tt is easy to see that Ly, Ly, ..., L, _, are
k edge disjoint linear forests and the remaining edges in
K,[1C, form one linear forest. Thus, la(K,[]C,) <k +

n+2

1 , which completes the proof.

3 la(K,OK,)

n+m
2

Theorem 3 la(K,[1K,) = if n and m are both

even.
Proof By Lemmas 2 and 3, la(K,[1K,) <la(K,) +

la(K ) =2 ¢ L XM Gince K (1K, is (n +m —2)-
m 2 2 2 n m
regular, la(K,[]K,) = n+m2—2 1 :n;m.

Now, we consider the case that at least one of n, m is
odd.

n+m-1

Theorem 4 la(K,[1K,) = ) if n is even and

m is odd.

Proof Let n =2k, k=1. Let V(K,) ={v,, v,, ...,
v,y and V(K,) ={yy, ¥\» --» Yu_, }. For convenience,
we denote any vertex (v, y;) € V(K,[JK,) by v”. For a
fixedj (j=0,1,...,m 1), we use K” to denote the
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complete graph induced by {vi’,v\”, ..., v/’ }. For a paths. So the edges in E(K,")\L,(j=0,1,...,m-1)
o _ ) _
fixedi (i =0,1, ..., n - 1), woe useI K, to de]note the form " linear forests together.
complete graph induced by {v{”, v{", ..., v"""}. By 2 1 ]
Lemma 5, for0<j<m -1, each K" can be decomposed It is clear that (U7, H,) U(U}, L;) forms a linear
into k edge disjoint Hamilton paths F{” (i =0, 1, ..., k=  forest. So la( K,[K,) Sn;l + mz—l +1=" 42—m On
1), where . .
the other hand, since K,[1K, is (n + m — 2)-regular,
PO =W A
' Tt A A e la(K,[]K,) = > =5 This completes the

and the subscripts are taken modulo 2k.
Fori=0,1,....,k-1, let N, = v/ |j=0,2, ...,
m-3}and N, , = (v VW0 |j=1,3,..,m-2}. It is
easy to see that each N,(i =0, 1, ...,2k —1) is a matching
of K and | N, | :mT—l.

each E(K")\N,(i =0,1, ...,2k — 1) can be partitioned

By Lemma 6, the edges in

into ™"~ Hamilton paths. So the edges in E(K) \

m-—1

N,(i=0,1,...,2k-1) form linear forests together.

Furthermore, for 0<i<k -1, each ( U]'.":‘Ol F”)UN,U

m—l+k:

N, forms a linear forest. So la(K,[JK,) <

m-1_n
2 2
n+m-2+1
2
regular. This completes the proof.

n+

2

—n-l_zi_l. On the other hand, la(K,[JK,) =

n+m-1

since K,[1K,is (n +m —2)-

Theorem 5 la(K,[1K,) = ™ if n and m are both

odd.

Proof We use the same notations in Theorem 4;
ie., let V(K,[JK,) ={v" |i=0,1,...,n-1;j=0,
1,....m-1}. For afixed j (j=0,1, ..., m—1), we use

KY to denote the complete graph induced by { v,

(0] ()]

v”,..,v”,}. Forafixedi (i=0,1,...,n-1), we use

K'” to denote the complete graph induced by {v!”, v!",
RS

Let H = {(vWVvW/'" |j=0,2,...,m -3} fori=0,1,3,
5,..n-2and H, = {(vWVv/'" |j=1,3,...,m-2} fori=
2,4,6,...n — 1. Then each H, is a matching of K! with
m—1

2

edges. By Lemma 6, the edges in each E(K'") \H,

m

m—1

(i=0,1,...,n—-1) can be partitioned into Hamil-

ton paths. So the edges in E(Kf,f)) \H,(i=0,1,...,n-1)

m-1_.
form > linear forests together.
Let L, = {v” v{’, v{" v, ., v, v} for j=0,1, ...
. . I |
m —1. Then each L, is a matching of K with ed-

ges. Again by Lemma 6, the edges in each E(K,”) \L,(j

n-1

=0,1,...,m—1) can be partitioned into Hamilton

proof.
Summarizing Theorems 3 to 5, we have the following
theorem.

Theorem 6 la(K,[]K)) = ’“‘2*_1‘
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