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Abstract: A novel nonlinear multi-input multi-output (MIMO)
detection algorithm is proposed, which is referred to as an
ordered successive noise projection cancellation ( OSNPC)
algorithm. It is capable of improving the computation
performance of the MIMO detector with the conventional
ordered successive interference cancellation ( OSIC )
algorithm. In contrast to the OSIC in which the known
interferences in the input signal vector are successively
cancelled, the OSNPC successively cancels the known noise
projections from the decision statistic vector. Analysis
indicates that the OSNPC is equivalent to the OSIC in error
performance, but it has significantly less complexity in
computation. Furthermore, when the OSNPC is applied to the
MIMO detection with the preprocessing of dual lattice
reduction ( DLR), the computational complexity of the
proposed OSNPC-based DLR-aided detector is further reduced
due to the avoidance of the inverse of the reduced basis of the
dual lattice in computation, compared to that of the OSIC-
validate the
conclusions with regard to both the performance and
complexity of the proposed MIMO detection scheme.
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based one. Simulation results theoretical

mong various detection schemes for the multi-input
multi-output (MIMO) wireless communication sys-
tems, the maximum likelihood ( ML) MIMO detector
provides optimal detection performance, but its computa-
tional complexity increases exponentially when numbers

. . 1 .
of transmit antennas increase'''. The reduced-complexity
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detection algorithms, which are not at all optimal, can be
classified as linear and nonlinear detectors. The conven-
tional linear zero forcing ( ZF)/minimum-mean-squared-
error (MMSE) detectors, for example, typically exhibit a
low complexity. The nonlinear ordered successive inter-
ference cancellation (OSIC) algorithm which detects each
symbol sequentially via classic remodulation and subtrac-
tion based canceling operations demonstrates its excellent
trade-off between computational complexity and error per-
formance. However, all these suboptimal schemes per-
form significantly worse than the optimal ML detec-
tor’”™

Recently, the lattice reduction (LR) has been intro-
duced as a promising technique which can improve the
performance of many suboptimal MIMO detectors'”'. Par-
ticularly, the OSIC-based LR-aided MIMO detection
scheme can achieve full diversity and present near optimal
detection performance with acceptable complexity'”'. In
MIMO detection applications, LR can aim at the primal
lattice which is generated by the channel gain matrix, and
the corresponding detection scheme is called the primal
LR (PLR)-aided MIMO detection. Correspondingly, the
dual LR (DLR)-aided MIMO detection is also feasible,
which features that the dual lattice basis, i. e., the
Moore-Penrose (MP) inverse of the channel gain matrix,
is reduced in the detection procedurem. Moreover, in
particular scenarios the DLR-aided detection is preferable
due to its low computational complexity and/or good per-
formance "'

Nevertheless, the complexity of the traditional OSIC-
based MIMO detection scheme ( also referred to as the
VBLAST algorithm) is still considerably high due to its
repeated inverse calculations of the successive deflated
channel gain matrix'”'. Specifically, when the OSIC al-
gorithm is used in DLR-aided detections,
complexity will be further increased. This is due to the

the overall

fact that the successive interference cancellation is carried
out at the primal lattice side. While what is obtained by
the DLR is the reduced dual lattice basis, the MP inverse
must be still calculated'® .

In this paper, we propose a novel nonlinear MIMO de-
tection algorithm to improve the performance of the MI-
MO detector with the conventional OSIC algorithm. Un-
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like the OSIC algorithm in which the known interferences
in the input signal vector are successively cancelled, the
proposed algorithm successively cancels the noise projec-
tions from the decision statistic vector. Hence we refer to
our algorithm as an ordered successive noise projection
cancellation ( OSNPC) algorithm. Theoretical analysis
and simulation results show that the OSNPC algorithm is
equivalent to the traditional OSIC algorithm in perform-
ance, but it has significantly less complexity in computa-
tion. Furthermore, when it is applied to the DLR-aided
MIMO detection, the computational complexity is even
more reduced due to the avoidance of the inverse of the
reduced basis of the dual lattice.

1 OSIC-Based LR-Aided MIMO Detection

Consider a MIMO wireless communication system con-
sisting of N transmitters and M receivers (M =N). The
relationship between the N-dimensional transmitted com-
plex symbol vector s and the M-dimensional received vec-
tor x is determined by

x=As+w (1)

where A e C"*" is a complex matrix with full column
rank, which presents a flat-fading channel gain matrix;
and w is the additive complex noise vector.

1.1 OSIC-based PLR-aided MIMO detection

A complex-valued lattice generated by A is defined as
L(A) ={Az, ze Z" +iZ"} (2)

The columns of A form a basis of the lattice L(A).
The reduced basis of L(A),A’ =AU, can be obtained by
using an LR algorithm such as LLL'" or SA"™, where U
is a unimodular matrix.

To apply LR to MIMO detection, the transformed basis
A’ is used in the expression of the received signal vector x
such that x =AUU 's +w =A'd + w, where d = U 's.
Then, the OSIC-based MIMO detection algorithm can be
applied to detect the transformed symbol vector d to yield
its estimate d. The detection result of s is then obtained
by the linear transformation § = Ud. As L(A) is generated
by the channel gain matrix A, it is usually called the pri-
mal lattice and the MIMO detection method mentioned
above is called the OSIC-based PLR-aided MIMO detec-
tion, which is illustrated in Fig. 1.
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Fig.1 OSIC-based PLR-aided MIMO detection scheme

1.2 OSIC-based DLR-aided MIMO detection

Let B e C"*" be the Moore-Penrose (MP) inverse of
A, ie.,

B=A"=(A"A) 'A" (3)

where A" denotes the Hermitian of A, and the notation
( )7 indicates the MP inverse of a matrix. The dual lat-
tice of the primal lattice L(A ) can be defined as

L(B) =1{z'B, zeZ" +iZ"} (4)

Accordingly, the rows of B form a basis of the lattice
L(B). The reduced basis of L(B) ,B’ = VB, can be ob-
tained by using the LR algorithm such as dual LLL or
SA! , where V is a unimodular matrix.

The OSIC-based DLR-aided MIMO detection scheme is
shown in Fig.2. Note that the calculation of the MP in-
verse of the reduced basis B', B'" =B (B'B'") ', is
needed for the subsequent OSIC-based detection. Clear-
ly, A=B" =B''V. Thus, the received signal vector x
can be expressed asx =B''Vs +w=B''d +w, where d =
Vs. Then d can be detected from x by using the OSIC al-
gorithm to produce d. Finally, § is derived from d via §
=vV'd.
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Fig.2 OSIC-based DLR-aided MIMO detection scheme

2 OSNPC Algorithm and OSNPC-Based DLR-
Aided MIMO Detection

2.1 OSIC algorithm review

First, we briefly review the OSIC algorithm"' in the
LR-aided MIMO detection. As mentioned above, the
transformed symbol d can be detected from x =A'd + w in
PLR-aided detection (or from x = B''d +w in DLR-aided
detection) by using the OSIC algorithm, which is de-
scribed as follows.

1) Compute A", the MP inverse of A’. Let B’ =A"",
then multiply B’ to the received vector x to obtain the de-
cision statistic vector

y=B'x=d+B'w (5)

2) Find y, in y with the highest signal-to-noise ratio
(SNR) and detect the corresponding symbol d, ,

k:argjmin(bjb_/’.H) (6)

where b/ denotes the j-th row of B'. The detection result
of d, is



Ordered successive noise projection cancellation algorithm for dual lattice-reduction-aided MIMO detection 231

d.=0(y,) (7)

where y, =d, + b, w and Q( - ) indicates the slicing or
quantization procedure according to the signal constella-
tion in use.

3) Cancel the corresponding interference term of d,
from received signal x: ¥ =x — d,a, = As — d,a, + w,
where a, denotes the k-th column of A’. Suppose that d,
is detected correctly, i.e. , d, =d,. Then¥=A'd - d, a]
+w=A'd +w, where A'is a deflated matrix of A’ob-
tained by deleting the k-th column of A’, and d is the re-
sult of deleting the k-th column of d.

4) Let A'=A’', x =x and d =d, repeat steps 1) to 3)
till all the N symbols in d are detected.

2.2 Proposition of MP inverse of deflated matrix

In the aforementioned OSIC iteration procedure, the re-
peated computations of the MP inverse of the deflated
channel gain matrices A’ are required, which leads to an
extraordinary computational cost. Nevertheless, if we ob-
serve an important property of the MP inverse of the de-
flated matrix, which is proposed as the following proposi-
tion, the repeated inverse computation in the OSIC can be
avoided.

Proposition 1  Assume that matrix A € C"*", and
rank A = N. Let B be the Moore-Penrose ( MP) inverse
of A, and A denote the deflated matrix of A. A is ob-
tained by deleting the k-th column of A, ke {1,2, -,
N}, and expressed as A = A ,. Furthermore, let B be the
MP inverse of A, then B can be simply derived from B as
follows ;

Delete the k-th row of B to obtain B which is expressed
as B=B,. Then

_ <Bi’bk>
bbby

- b, i=12,,N-1 (8)
where b, and b, denote the i-th row of B and B, respec-
tively; b, denotes the k-th row of B; (b,,b,) =bb, is
the inner product of b, and b,, and (b, ,b,) =b,b;.

Proof It is known that A and its unique MP inverse B
satisfy four Penrose equations'” : 1) ABA =A; 2) BAB
=B;3) (BA)" =BA; and 4) (AB)" =AB. Thus, we
only need to prove that A and B which are derived from
Eq. (8) satisfy the Penrose equations as well. Consider-
ing that the matrix form of Eq. (8) is presented by

N Bb!' b
B=B-—* (9)
b.b,
Then we have
.. _. Bb'bpA Bb!'O
BA =BA - bAbHA =Ly~ kb lbxl-;N_” =1,
kY k kY k

(10)

where I, _, denotes the identity matrix of order N -1, and
O, v, is the row zero vector with N —1 elements. b,A
=0,y due to BA =1,. Consequently, the following
equations hold: 1) ABA =AI, ,=A;2) BAB=1, B =
B;3) (BA)" =(1,_,)" =BA. In addition,
~~ (- Bb'b)\ - b, b,
AB_A(B— b b ) _AB(IM o b“) (11)

k¥ k k™ k

By applying AB = (AB -a.b,) to Eq. (11), where a,
denotes the k-th column of A, we obtain

o ABb!' b bbb ABb!' b

AB=AB-apb -~ " a‘b‘b‘H teAB T
Wk kY k Lagt

(12)

It is observed that AB = (AB)", b,A =i,, and B"i} =
b;', where i, is the k-th row of I,. From Eq. (12), we
have

o AB)"b.' b, B"(bA)"D,
AB=AB—( ;ka “=AB - (bka) =
k™ k k™ k
B'i'b, b, b,
AB - bb" —AB_be (13)
k7 k Kk
Thus,
o b b\" b b\"
(AB)H: AB— k Hk (AB)H— k HI\
bk k bkbk
AB—bkH bk:;ﬂ? (14)
b.b!

That is to say, A and B satisfy the 4th Penrose equa-
tion.

2.3 OSNPC algorithm

By applying the proposition of the MP inverse of the
deflated matrix in the LR-aided MIMO detection, we can
construct the OSNPC algorithm as follows.

Take the PLR-aided MIMO detection for example.
Suppose that the received signal vector x = A’'d + w and
channel gain matrix A’ are known inputs, then the trans-
formed symbol vector d can be detected by using the fol-
lowing steps. Note that steps 1) and 2) are the same as
those of the OSIC algorithm.

1) Compute A", the MP inverse of A’. Let B’ =A'",
then multiply B’ to the received vector x to obtain the de-
cision statistic vector y =d + B'w.

2) Find y, in y with the highest signal-to-noise ratio
(SNR) and detect the corresponding symbol d,, where k
= argjmin (b/b/"). The detection result of d, is d, =
O(y,), where y, =d, +biw =d, +n,, and n, ( =b;w)
indicates the noise term in y,.

3) Compute the estimate of the noise term in y, by

(15)

A

M=y —d,
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4) Delete the k-th rows of B', y and d to obtain a de-
flated matrix B',y and d, respectively. Then we have y
=d + B'w. Computing

_bb)”
" bb"

i i=1,2,---N-1 (16)
and canceling the known noise projection terms from y
yield

3=y —pat =d, +bw — ), i=1,2,,N-1
(17)

Suppose that d, is detected correctly, i.e.,d, = d,.
From y, =d, + b,w and Eq. (15), we have 7, = b)w.
Hence Eq. (17) becomes

y,=d, + (b —u,b)w=d, +blw i=1,2,-- ,N-1
(18)

where b] =b! -, b'=b, - (bb'}/(b,b'}))b,. We see
that b/ is obtained by subtracting the projection of b onto
b, from b’. Thus, b, must be orthogonal to b and also
shorter than b,. For convenience, we call u,b;w the noise
projection of b/w onto noise term b,w and call this pro-
posed detection algorithm as OSNPC.

5) Lety,=y,,b/=b/, and d, =d, fori=1,2,--- N-1
(ory=y,B'=B’, and d =d in vector notation). Repeat
steps 2) to 4) till all N symbols in d are detected.

2.4 Performance and complexity comparison of OSNPC
and OSIC

From the aforementioned proposition of the MP inverse
of the deflated matrix we can arrive at the conclusion that
the OSNPC algorithm is equivalent to the traditional OSIC
in performance, which can be explained as follows.

In the OSIC, after d, is detected and its corresponding
interferences are cancelled from x, the updating x is

x=x-da,=A'd+w+(d, -d)a] (19)

The updating decision statistic vector is j = B'¥ =d +
B'w+ (d, —d,)B'a). From Eq. (9) we have B’ =B’ -
B'b;" b/ (b/b"). Observing that B'a] =0 and ba, =1,
we obtain

B'b"
bib,"

y=d+B'w+(d -d,) (20)

In the OSNPC, after d, is detected and the correspond-
ing noise projections are cancelled from y, the updated y
is obtained, and its expression is explained as follows.

The matrix form of Eq. (17) isy =y ~u, 5, =d + B'w
—m,.f,, where u, = B'b/"/(b'b]") according to Eq.
(16). Observing that 7, =y, —d, =d, —-d, +b'w, we
have

~ 3 D’ B/bk,H o ’
y:d+Bw_b;bk’“ (d,-d, +bw) =
- B'b" B'b"
d+B'w- Tbw - —(d, -d,) =
b.b/ bb/
. . B'b"
d+BW_(dk_dk)bl:bk,H (21)

It can be clearly seen that Eqs. (20) and (21) are the
same, which means that the decision statistics in the OS-
NPC algorithm are always equal to those in the OSIC al-
gorithm. Thus, we conclude that the OSNPC algorithm is
equivalent to the OSIC in performance.

Now we compare the complexity of the OSNPC with
that of the OSIC briefly. To compute the MP inverse of a
matrix A, the most efficient method is based on the Chol-
If this calcula-
tion method is applied, the numbers of multiplications
and additions of the OSIC algorithm are (9/4) N* +
(4/3)N’M + (29/6) N’ + (5/2)N°M and (9/4)N' +
(4/3)N°M + (25/6 )N’ + (5/2) N°M, respectively''".
Here N is the number of transmitters and M the number of
receivers in the MIMO system, and the terms below the
third order are ignored for brevity. Note that the multipli-
cations and additions herein refer to complex value opera-
tions. By contrast, when applying the same MP inverse
calculation method to the OSNPC-algorithm, it is easily
obtained that the numbers of multiplications and additions
of the OSNPC algorithm are(2/3) N’ +3N°M and(1/2)
N+ (5/2) N°M, respectively. These results reveal that
the complexity of the OSNPC algorithm is considerably
lower than that of the OSIC algorithm.

esky factorization of the matrix A"A""’.

2.5 OSNPC-based DLR-aided MIMO detection

Although the aforementioned OSNPC algorithm is de-
scribed on the basis of the PLR-aided MIMO detection, it
can also be applied to the DLR-aided MIMO detection.
The OSNPC-based DLR-aided MIMO detection scheme is
shown in Fig. 3. In contrast to the OSIC block in Fig. 2
whose inputs are signal vector x and MP inverse B’ of the
reduced basis of the dual lattice, the OSNPC block in
Fig. 3 needs x and reduced basis B'as its inputs. Obvious-
ly, the inverse calculation of the reduced basis B’ is avoi-
ded in the OSNPC-based DLR-aided MIMO detection
scheme, which further reduces the overall computational
complexity of the detector.

—»A - MP. —>B DLR F Inversion
mversion
B ’
OSNPC
detection

x }

Fig.3 OSNPC-based DLR-aided MIMO detection scheme
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3 Simulation Results

Numerical simulations are performed to evaluate the
complexity and performance of the proposed OSNPC-
based DLR-aided MIMO detection scheme ( OSNPC-
DLR). They are also conducted on the OSIC-based DLR-
aided MIMO detection scheme ( OSIC-DLR) for compar-
ison.

First, we compare the computational complexity of the
two schemes. It is well known that for a common floating
point implementation of an algorithm, the floating-point
operations ( flops) dominate the calculation, and the
number of flops is a consistent measure of the algorithm
computational complexity, independent of what machine
it runs on. Therefore, we carry out numerical experi-
ments to count the number of flops in computation used in
the detection schemes. In our experiments, the dual
LLL"is selected as the DLR algorithm in both OSNPC-
DLR and OSIC-DLR. Because the computational com-
plexity of the dual LLL algorithm is randomly varying,
we calculate the average flops on 10° experiments for each
case. Fig. 4 shows the average number of flops of OS-
NPC-DLR and OSIC-DLR with N = M. It is observed
that the number of flops of OSNPC-DLR increases much
more slowly than OSIC-DLR as N increases.
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Fig.4 Average number of flops of OSNPC-DLR and OSIC-
DLR vs. number of transmitters with N =M

Fig. 5 illustrates the performance comparison of the two
schemes in terms of symbol error rate (SER). The corre-
sponding performance of the optimum ML detector is also
depicted in Fig. 5 for further comparison. In Fig. 5, the
SNR is defined as E /N, with E_ denoting the average re-
ceived energy per symbol per receiving antenna and N,
the power spectrum density of additive white Gaussian
noise, respectively. It turns out that OSNPC-DLR per-
forms nearly the same as OSIC-DLR in terms of SER at
different values of N and M.

4 Conclusion

We propose an OSNPC algorithm to improve the per-
formance of the MIMO detector with the conventional
OSIC algorithm. The OSNPC-based DLR-aided MIMO
detection scheme is further proposed. Analyses and simu-
lation results show the better quality properties of our pro-
posed detector regarding both the error performance and

—— OSIC-DLR
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—— ML
102
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1074
10 -5k 1 | Il | 1 1 1 | Il ]
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10°F
—— OSIC-DLR
107! —+— OSNPC-DLR
10721 —ML
o]
S=107%1
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10 -5kt | 1 | | ]
8 10 12 14 16 18 20
SNR /dB
(b)
10°[

. —— OSIC-DLR
10~ —+— OSNPC-DLR
1072 ML

o
210
1074
5 1 1 1 1 ]
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SNR /dB
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Fig.5 Symbol error rate of OSNPC-DLR and OSIC-DLR in
an N x M uncoded MIMO system using 16-QAM. (a) N=M =4;
(b) N=M=8;(c) N=8,M=10

computational complexity. It is noteworthy that the appli-
cation of the OSNPC algorithm is not restricted to DLR-
aided MIMO detection. In fact, it has wider applicability
as a general detection algorithm for all the non-orthogonal
signaling communication systems (e. g. , for non-orthog-
onal multi-user signal detection). Besides, the proposi-
tion of the MP inverse of the deflated matrix proposed in
this paper provides some useful insights on the MP in-
verse problems and needs further investigation of the re-
lated works.
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