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Abstract: The stabilization problem via the linear output
feedback controller is addressed for a class of nonlinear
systems subject to time-delay. The uncertainty of the system
satisfies the lower-triangular growth condition and it is affected
by time-delay. A linear output feedback controller with a
tunable scaling gain is constructed. By selecting an appropriate
Lyapunov-Krasovskii functional, the scaling gain can be
adjusted to closed-loop system globally
asymptotically stable. The results can also be extended to the
non-triangular nonlinear time-delay systems. The proposed
control law together with the observer is linear and memoryless
in nature, and, therefore, it is easy to implement in practice.
Two computer simulations are conducted to illustrate the
effectiveness of the proposed theoretical results.
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render the

n this paper, we consider the problem of global output
feedback stabilization for a class of uncertain time-de-
lay systems described by

X () =x,() +o,(x, (), x,(t=7,)) |
: [

X (D =x,(0) +o_ (x,(8),...x,_ (D), %

x(t=7),..x, (t=7,)) [ )

500 =u(D) +o,(x (D, x (0. 5
x(t=71)),..,x,(t=7))) [

W) =x,(1) H
x(1) = W1) -r<t<0 1

where x(1) = {x,(1), x,(1), ..., x,(t)}" € R"is the system
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state; u(t) € R is the control input; y(t) € R is the sys-

tem output; 7, >0, i=1,2, ..., n are given time-delays;

while 7= max {7,}, W(¢) is the initial function of the
i=1,2,...,n

system state vector, and ¢,(+) (i=1,2,---,n—1) repre-
sent nonlinear perturbations that are not guaranteed to be
precisely known. Our objective is to develop an output
feedback controller to globally stabilize the uncertain non-
linear system (1).

Owing to the practical importance, the problem of
global output feedback stabilization for uncertain nonlin-
ear systems has attracted more attention from the nonlin-
ear control community compared with the state feedback
case. Recently, fruitful results of output feedback have
been achieved. For a class of lower-triangular nonlinear
systems, with the help of feedback domination design'"’,
some interesting results have been established under the
linear growth condition''’ and the higher-order growth

condition" .

Based on the homogeneous domination ap-
proach, the homogeneous output controller was designed
in Refs. [3—5], where the system is under the homoge-
neous growth condition.

In practice, time-delay is very common in system
state, input and output due to the time consumed in sens-
ing, information transmitting and controller computing.
However, the aforementioned results did not consider the
time-delay effect. Over the past decades, in the case
when the nonlinearities contain time-delay, some interest-
ing results were achieved. In Refs. [6 —7 ], the backstep-
ping approach was adapted. In Ref. [8], an adaptive ap-
proach was employed to design a state feedback controller
to globally stabilize a class of upper-triangular systems
with time-delay. The work'” relaxed the growth condi-
tion imposed in Ref. [ 8 ] by employing a dynamic gain.
Some results on state feedback stabilization for some dif-
ferent classes of time-delay nonlinear systems can also be
seen in Refs. [ 10 —11]. In the case when system state
variables are not totally measurable, the problem of out-
put feedback stabilization is more challenging and fewer
results have been achieved for nonlinear systems with
time-delay. For a linear system with time-delay in the in-
put, the problem of output feedback stabilization was
solved in Refs. [ 12 —13 ], where the method of the linear
matrix inequality (LMI) was used. For nonlinear system
(1) subject to time-delay in uncertainties, the problem of
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output feedback stabilization has not been widely investi-
gated. In this paper, we focus on solving the problem by
using the output feedback domination approach. First, in-
spired by the result of Ref. [ 1], we propose the design
procedure for a linear output controller with a scaling gain
for system (1) under the linear growth condition. Then,
we construct a Lyapunov-Krasovskii functional and use it
to choose an appropriate scaling gain in the output feed-
back controller to guarantee the closed-loop system glob-
ally asymptotic stability. The proposed observer and con-
trol law are linear and memoryless in nature, and, there-
fore, are easy to implement in practice. After that, the
output feedback controller is verified feasible when it is
extended to the non-triangular nonlinear time-delay sys-
tems. Two computer simulations are conducted to illus-
trate the effectiveness of the theoretical results.

1 Linear Output Controller for Lower-Triangu-
lar Time-Delay Systems

In this section, we are devoted to the problem of global
stabilization of nonlinear systems under the lower-triangu-
lar linear growth condition, and the nonlinear time-delay
system (1) can be globally stabilized by a linear output
feedback controller. Specifically, ¢, (x, (t),--,x,(1),
x (t=7),,x(t-7,)), fori=1,2, -+ n, satisfy the
following growth condition.

Assumption 1 For i =1,2,--- n, there are constants
¢, =0 and ¢, =0 such that

‘QD,-(xl(f),"',xn(f) 9x(t> ,X(t—Tl) ,"',Xi(l—T‘->) ‘ =

ey (L () |+ Lx(0) [)+
02( ‘xl(t_Tl) ‘ +ost ‘xi(t_Ti) ‘) (2)
Remark 1 Assumption 1 requires that the nonlinear

function ¢, (x, (), -+, x, (t),x, (t —=7,), -, x,(t -
7,)), for i=1,2,-- n, should be bounded by linear
terms with and without time-delay. Assumption 1 is more
general than the linear growth condition imposed in Ref.
[1] since Assumption 1 reduces to the nonlinear system
in Ref. [ 1] when ¢, =0.

With the help of Assumption 1, we are ready to con-
struct a linear output feedback controller for system (1).

Theorem 1 Under Assumption 1, there exists an ap-
propriate gain such that system (1) can be globally stabi-
lized by the following output feedback controller .

A | 1 .
M([) = —L”[klx,(t) +fk2x2(t) + - +Fk”xn(t)]

(3)
£,(1) =%,(1) + La,(x,(1) = £,(1)) O
féz<_z>=f3<t>+L2a2<xl<z>—f1<r>> g
: I:K4)
A _a n-1 . (|
X,.,()=x,(t) +L" a, (x,(t) =%,(1)) 0O
]

£,(0) =u(t) +L'a,(x,(1) = £(1))

where constants a, >0, k;, >0, j=1,2,--- n are the coef-

n-1

ficients of the Hurwitz polynomials p, (w) =" + a,w

n-2 n n-1
rta, w+a,and p,(w) =" +k,o" +-- +

+ a,w
kw+k,.

Proof First we introduce the following changes of co-
ordinates with a constant scaling gain L=1 to be deter-

mined later.

xi(t) ~ ﬁ,’(’) u(t A
2(0 =00 40 =25 v =D e =z -
i:1’2’.”’n (5)

A simple calculation gives
E=LA e+ D (6)

with

|:]§01( ) ]
o-a 1 ‘o O (. 8
O | L% |
A=, =0 . O
o ] U] |
Ll-a, 0O 0] ol ( -4y
Ilnflgon I:I

In addition, with the help of the coordinates change
(5), the output feedback control law defined in Eq. (3)
can be rewritten as

u(e) =L'v(1), v(1) = =k 2, (1) = =k,2(2)  (7)

Moreover, the observer (4) with the control law (3)
can be rewritten as

£(1) =LA,45(1) + LHCe (8)
0 L 7 %o oD
whereA2=§6 0 1 §H=%' LC=
n-1
Ok, -k - -,0 O O
[1 0 - 0]

In what follows, we shall prove that the transformed
closed-loop systems (6) and (8) can be rendered global-
ly asymptotically stable.

By the definitions of a, and k,, it can be verified that
both A, and A, are Hurwitz matrices. As a result, there
are two positive definite matrices P, =P| >0 and P, = P,
>0 such that

AP +PA = -1, A)P,+P,A, = -1 (9)

Construct the Lyapunov function as V(&,2) = (M +1) -
e (t)Pe(t) +2(1)"P,z(1) with M =2 ||P,HC |°.

The derivative of V(g,£) along the closed-loop sys-
tems (6) and (8) is

V(e,2) = -L(M+1) [lell” +2(M +1)e"P, & -
L|z(t)|? +2L5"(t)P,HCe (10)
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By Assumption 1, for any L=1 the following holds

1 1
2P @=2lel P {(1+ 4 ) -

(Cl ‘xl ‘ +c, ‘xl(t_T]> ‘)+(1+L+'“+Lnlfz) :

L
‘xz‘ ‘xz(t_Tz)‘ 1
(cl . ta 3 )+---+(1+T)-
(C ‘xml‘ te xnl(t_Tnl))_l_
L2 2 I

|x,(t-7,) |
sizrl)

%, |
L

| x,(t-7,) |
s S an

| x, |
¢ L +C,

eollell {1x ]+ ntr=r) |+

‘xz(t_Tz) ‘ . ‘xn
L Ln—l

for a positive constant ¢, =2max { ¢, ,c, | I P, | n. By ¢,

X.
:z,—zﬂ.:Lii] - 2., we have
xi A .
Li—l = ‘Zi + ‘gi 1:1’2"”’n

With this in mind, (11) can be further estimated as

2[ +‘€i +‘2;(t_7-;)‘+

le,(t=7) ] <2c,Vnllell” +2c,vnllel -

[Hz|| +Jiz§<t-7[> +J23?(l—7[) ] <
seofn el + e[ 2 | +
iff(t—ﬂ) +i]g,?<t-7,.)]

In addition, noting that M =2 | P,HC |*, the follow-
ing holds

26' P <2c, el Y1
i=1

(12)

1
=

2L2(t)TP2HCs$2L( 5
N

\ﬂqcﬁmecwuu><

Loy,
Lo lzll* +imlle ] (13)

Substituting (12) and (13) into (10) yields

V(e,2) <-[L-5c¢,yn(M+1)]|e(t) |-
(22 e+ D] 120 [P +erfn(m+1) -

[Ya(-m)+ Ye-m)] (14)
i=1 i=1
Construct the Lyapunov-Krasovskii functional as
W(et) = V(es) + Zf £(6)Rd0 + Zf £ (0)Rdo
i=1 Ji-1, i=1 J1-1,
(15)

WhereR=c3ﬁ(M+l).

With the help of (14), taking the derivative of (15)
yields
W(e,2) <-[L-5c,yn(M+1)]|e(t) |’ -
[%L—CSN/;(M+1)] lz(o) I* +

MDY 20+ 3 e (n]<
—[L-6e,n(M+1)]lell” -

1 5
[ -2emr ]Izl (16)

Choosing a large enough gain L >6c,/n (M +1), we
have

(17)

for two positive constants p, and p,. As a conclusion, the
closed-loop system, consisting of systems (6) and (8),
is globally asymptotically stable'"*'. In other words, sys-
tem (1) is globally stabilized by the output feedback con-
troller according to Eq. (3) for a large enough L.

W(e,2)< -p llel” -p, [2(0) [I”

Remark 2 Theorem 1 shows that under Assumption
1, the global output feedback stabilization of system (1)
can be achieved even if the term ¢,( +) is intermixed with
disturbances and time-delay. First, we adopt the same
format of the observer and the control law introduced in
Ref. [11]. Then, with the help of an appropriate func-
tional, the scaling gain is carefully chosen to render the
closed-loop system globally asymptotically stable. The
proposed observer and control law are linear and memory-
less in nature, and, therefore, they are easy to implement
in practice.

Remark 3 If all the time-delays of x, are of the same
value, i.e. 7, =7 for i =1,2,---,n, then the part of

Y s(t—-1,)+ > e (t—7,)in (11) and (14) will be
i=1 i=1

replaced by [|2(r=7) ||> + | e(r=7) ||*. Additionally,
(15) will become the following equation ;

W(e.2) = V(e.d) + [ le(6) |*Rag +

t-7

[ lleto) II*ran

-7

It is easy to verify that (16) and (17) will remain the
same. So the proposed observer and controller are still
applicable to the system with a unified time-delay.

In the remainder of this section, we use an example to
illustrate the application of Theorem 1.

Example 1 Consider the following time-delay system

X, (1) =x,(t) =0.5x, (1) +0.5cos8(x,)x, (t-1)

X, (1) =u(t) +0.5x,(t) +0.6x,(1) +
3sin(x, (¢) )sin(x, (1 =1)) +0.5In(x2 (£ -0.9) +1)

Yy =X

(18)
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By the differential mean-value theorem, there exists a
constant ¢ >0 such that In(x3(#-0.9) +1) <cx, (1 -
0.9). It is straightforward to verify that Assumption 1
holds for system (18). Hence, by Theorem 1 we now
can design an output feedback controller of the form.

u(t) = —Lz[kl)?,(t) +%k2)?2(t)]
$(0) =2,(0) +La, (x, (1) —x, () | (19
2,(0) =u(t) +Lay(x,(1) -%,(1))

Simulation results are shown in Figs. 1 and 2, where
the gains are selected as k, =0.3, k, =1.5, a, =2, a, =
6, L =3.4 and the initial functions are

x, (1)1 -10sin(z-0.2) £(071 10
[xz(t)]_[ —6sin(r-0.2) |’ [;ez(t)]‘[o]

for —1<r=<0.

1.5
1.0k — MiTTth
0.5k
b3
0
. I I I I 1
0.8 2 3 4 5 6
Time/'s
(a)
3
& —xy 5 ey
£ 0of
-3 7 3 4 5 6
Time/'s
(b)

Fig.1 State trajectories of Egs. (18) and (19). (a) x,, %;

(b) x,, %

-10

-25

Time/s

Fig.2 Time history of the control signal

2 Extensions

Assumption 1 requires nonlinear perturbation in system
(1) satisfying a lower-triangular linear growth condition
which is affected by time-delay. In this section, we show
that the condition can be further relaxed to encompass
some more general nonlinearities, which go beyond trian-
gular growth condition. Specifically, the following gener-
al condition will be used in this section.

Assumption 2 For i =1,2,---,n, there exist con-
stants m=0, v, >0, ¢, =0 and ¢, =0 such that for any L
=1 the following holds

Lil—ld)i(xl(t)?”"‘xn(t)’xl(t_Tl)’”.’xn(t_Tn))g
5 (0 e 102}
= Yo : U

By (2), it is apparent that when L =1 and n =i, the
condition (20) will reduce to condition (1). So As-
sumption 2 includes Assumption 1 as a special case. As a
result, the next theorem is a more general result achieved
under Assumption 2. The following lemma is useful in
the simulation illustration.

Lemma 17" Let ¢, d be positive real numbers. The
following holds for x € R, y € R and any positive real-
valued function y(x,y) :

c d C c+d
<——y(x, +
[Ty s y(ey) x
d —c/d c+d
o ly
Theorem 2  Under Assumption 2, there exist con-
stants g, and k,, i=1,2,--- ,n and L=1 such that the out-

put feedback controller (3) based on linear observer (4)
globally stabilizes system (1).

Proof The proof is similar to that of Theorem 1. We
use the exactly same observer (4) and control law (3).
Although the nonlinear function is not in the triangular
form, Assumption 2 will directly lead to the following
equation similar to (12) by using the change of the coor-
dinates of (5).

2P <SL ey n e + Ll-vczﬁ[ 20 |1 +

ZZA?(I—T,.) + 28?(1‘—7,»)]
i=1 i=1

Then, the global stabilization can

(21)

where v= min {v,].

i=1,2,.n

be concluded with an appropriate choice of gain L >
[6¢,/n(M+1)]"" which is similar to that in (16).
The detailed proof is omitted here for brevity.

We end the section by the following example to illus-
trate the explicit construction of the global output feed-
back controller for Theorem 2.

Example 2 Consider the following time-delay system

X (1) =x,(t) +x°(t=0.3)In(x;(-0.9) +1)
X, (1) =u(t)

Y =X

(22)

Clearly, ¢, =x°(t=0.3)In(x2(t-0.9) +1) is not
bounded by a linear growth condition imposed in As-
sumption 1. However we can show how Assumption 2
holds for (22). Letting x=x"(#-0.9), by the differ-
ential mean-value theorem, we have
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In(x;(£-0.9) +1) =In(¥’ +1) <¢,x  (23)

for a constant ¢, >0. As a matter of fact, by (23) and
Lemma 1, we can see that

| x)°(1-0.3)In(x3(£-0.9) +1) | <
¢ |x (1-0.3) | [ x,(1-0.9) | "<
2/3
LZ/sz,1 ‘xf/s(t—().?’) ‘ ( ‘xz(t—0.9)/L‘3/5) <
L'e,([x,(1-0.3) | + [x,(1-0.9)/L])
(24)

By choosing v, =3/5, it can be verified that ¢, satis-
fies Assumption 2. As a result, Theorem 2 can be applied
to system (22). Hence, by Theorem 2 we now can de-
sign an output feedback controller of the form:

u(n) = -k (1) + s, (0)]

£.(1) =%,(1) +La, (x, (1) =£,(1))
2,(0) =u(t) +Lay(x,(1) -%,(1))

(25)

Simulation results are shown in Figs. 3 and 4, where
the gains are selected as k, =0.9, k, =2.2, a, =1.356,
a,=3.9, L=4.6, and the initial functions are

x, ()] 1 -6sin(r-0.2) £(071 10
[xz(t)]_[—Ssin(t—O.Z) ’ [)22(1)]_[0]

-1=<r<0
1.5
_1.0 [
0.5
0
- 1 ]
0.5 5 5
ST
\
0 \-\ 7
A v
& _s — %y 5 =%y
_10 1 1 1 1 1 ]
0 2, 3 4 5 6
Time/s
(b)

Fig.3 State trajectories of (22) to (25). (a) x,, %; (b) x,, &

30

20

10

0

3 -10
-20
-30
-40
-50

Time/s
Fig.4 Time history of the control signal

Remark 4 The uncertain nonlinear time-delay system
investigated in this paper is under the linear growth condi-

tion. There are still other problems remaining unsolved.
For example, an interesting research problem is how to
design a homogeneous output feedback controller to glob-
ally stabilize the nonlinear time-delay systems under the
homogeneous condition.

3 Conclusion

In this paper, we investigate the problem of global out-
put feedback stabilization for a class of time-delay lower-
triangular nonlinear systems under the linear growth con-
dition. A linear output feedback controller with a scaling
Then
with the help of the Lyapunov-Krasovskii functional, the
scaling gain is carefully adjusted to render the closed-loop
system globally asymptotically stable. The output feed-
back controller can also be extended to the non-triangular

gain is explicitly constructed based on Ref. [1].

nonlinear time-delay system. The linear output feedback
controller is memoryless and easy for implementation.
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