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Abstract: Aiming at the real-time, fluctuation and nonlinear
characteristics of the expressway short-term traffic flow
forecasting, the parameter projection pursuit regression
(PPPR) model is applied to forecast the expressway traffic
flow, where the orthogonal Hermite polynomial is used to fit
the ridge functions and the least square method is employed to
determine the polynomial weight coefficient ¢. In order to
efficiently optimize the projection direction a and the number
M of ridge functions of the PPPR model, the chaos cloud
particle swarm optimization (CCPSO) algorithm is applied to
optimize the parameters. The CCPSO-PPPR hybrid
optimization model for expressway short-term traffic flow
forecasting is established, in which the CCPSO algorithm is
used to optimize the optimal projection direction a in the inner
layer while the number M of ridge functions is optimized in the
outer layer. Traffic volume, weather factors and travel date of
the previous several time intervals of the road section are taken
as the input influencing factors. Example forecasting and
model comparison results indicate that the proposed model can
obtain a better forecasting effect and its absolute error is
controlled within [ —6,6], which can meet the application
requirements of expressway traffic flow forecasting.
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he accurate and real-time forecasting for the express-
T way short-term traffic flow is an important link in
expressway intelligent management, and many scholars
have been attempting to do research and make improve-
ments on their forecasting methods, which are mainly di-
vided into two categories, that is, the method based on
the determination of the mathematical model ( Category
1), such as the time series forecasting model'" and the
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Kalman filtering model™, and the method of the knowl-
edge-based intelligent model ( Category I ), such as the
neural network model™' and the forecasting model™ based
on the chaos theory. Owing to that, the model of Catego-
ry [ involves fewer factors; its calculation is relatively
simple, but it is unable to overcome the influence of the
random disturbance factors on the traffic flow. The typi-
cal representative model of Category Il is the BP neural
network model, but the neural network model appears to
be in the presence of the curse of difficult dimensionality
problems in the treatment of the high-dimensional nonlin-
ear problem and cannot guarantee higher forecasting accu-
racy.

The parameter projection pursuit regression ( PPPR)
model makes the high-dimensional data do the optimal
linear projection to the one-dimensional subspace through
a three-step optimization of the projection direction, the
polynomial coefficients and the number of the ridge func-
tions'”’, which may make the point-set projected to one-
dimensional space possess radiation non-variability and
denseness on the one hand, and it may minimize the loss
of the quantity of information through the projections on
the other hand. Thus, the practical problems, such as
small samples, nonlinearity, high dimensionality, local
minimum etc., were well solved by the PPPR model,
and the curse of difficult dimensionality problem was
overcome, which has obvious advantages in solving such
problems as the small number of samples and the relative-
ly large dimensionality. The PPPR model is applied to
the expressway short-term traffic flow forecasting in this
paper, and its core is the optimal combination solution of
the projection direction @, the polynomial coefficient ¢
and the number M of ridge functions. Therefore, the se-
lection of the model’s parameters may affect its applica-
tion to a great extent. However, the model does not give
the selection method of each parameter, and, owing to
that, some errors exist with regard to the commonly tradi-
tional algorithms of parameter optimization.

The particle swarm optimization (PSO) is an optimiza-
tion method which was first proposed by Eberhart and
Kennedy for the simulation of the foraging behavior of the
natural biotic populations'”’. The PSO algorithm has been
widely concerned and successfully applied in system iden-
tification, communication system design, constrained op-
timization, process optimization, economic management,
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traffic control, and FIR digital filter design etc. For the
monotonic function and strictly convex function or uni-
modal problems, the optimal solution can be gained rap-
idly by the algorithm. However, the algorithm depends
greatly on the initial values, and the swarm diversity
drops rapidly with the increase in the number of itera-
tions, which makes the algorithm unable to jump out of
the local extreme points and leads to premature conver-
gence. Thus, its global search capacity is affected, and
especially for the high-dimensional multimodal functions,
premature phenomena may easily appear. On the basis of
the advantages of the chaotic ergodicity of the Cat map-
ping and the randomness and stable tendency of the cloud
model, and, with respect to that, the PSO algorithm has
the deficiencies of weakened diversity and slow search
speed in the later evolution period, the chaos cloud parti-
cle swarm optimization ( CCPSO)™ algorithm is pro-
posed.

The CCPSO-PPPR expressway traffic flow forecasting
model, adopting the CCPSO algorithm to search the opti-
mal projection direction a in its inner layer while the
number M of the ridge functions is optimized in its outer
layer, is established. In the forecasting process, the traf-
fic flows, weather factors and travel dates are taken as the
input vectors of the model in the first four time intervals
of the forecasting road section. This paper uses actual
westbound traffic flow of a section in Henan Changji Ex-
pressway to compare the forecasting performance of the
proposed CCPSO-PPPR model with the ARIMA model,
the PSO-BP neural network model, the conventional
SMART-PPR model and the PSO-PPPR model.

1 Parameter
Model

Projection Pursuit Regression

In 1981, Friedman and Stuetzle et al. " proposed the
analysis theory of the projection pursuit regression ( PPR)
with respect to the high-dimensional problem in the multi-
ple regression analysis. The basic idea of the method is
that the high-dimensional data are projected to the low-di-
mensional subspace through some combination and the
use of computer technology, and in order to realize the
research and analysis goal of the high-dimensional data,
the projection, capable of reflecting the structure and
characteristics of the original data, is determined through
minimization of some projection indices. The principle of
the PPR technology is as follows.

Suppose that X is a Q-dimensional random variable and
y =f(X) is a one-dimensional random variable. In order
to avoid the contradiction that linear regression cannot re-
flect the actual nonlinear situation, the regression function
F(X) is approached by a series of ridge functions g,(Z,)
in the PPR model. The mathematical expression of the
PPR function £(X) is

F(x) = Zg,-(Z,-) (1)

where g,(Z.), Z,, M are the values of the i-th ridge func-
tion, the independent variable of the ridge function and
the number of the ridge function, respectively, and Z, =
a'X expresses the projection of the Q-dimensional vector

0
X in the projection direction a, which meets 2 a, =1.
d=1

From Eq. (1), we can see that the forecasting error of the
model may be reduced by adding the number M of the
ridge function, and the stability of the model may be en-
hanced through continuous data smoothing approximation
to obtain the ridge function g,(Z;); thus the PPR model
can objectively reflect the intrinsic structure and character-
istics of the data. From above we know that the key to
solve the PPR model is that the optimal combination of
the projection direction a, the ridge function g,(Z,) and
the number M of the ridge function are searched under the
following minimization criterion:

minQ = [F(x) - ¥ g(a'X)]
s. t. Zaf, =1

k=1

d=1,2,...0 (2)

The conventional PPR implementation method is the
multiple smoothing regression computing technique pro-
posed by Friedman and Stutzele, the essence of which is
an alternately iterating optimization method based on lay-
ering and grouping. The optimization process, relating to
much complex mathematical knowledge, is not easy to
program and carry out, which limits its wide application
to a certain extent. So the PPPR model is used to forecast
the expressway traffic flow in this paper, the ridge func-
tion of which is fitted by using the variable-order orthogo-
nal Hermite polynomial. Here the fitted value f,(X) of
the one-dimensional ridge function is expressed as

r=1
10 = 3 Chy(2)

“=
where fi(X) ,» T, r, G and Z, are the fitted values of the
one-dimensional ridge function of the i-th sample, the
number of the input samples, the order of the Hermite
polynomial, the Hermite polynomial coefficient and the
projection of the i-th input samples in the projection di-

i=12,...,T (3)

rection @, respectively. In this paper, C;is optimized by
the least square method, and Z, is expressed as

Q
Z = Yax, i=12..T (4)
d=1

where a, is the projection direction; Q and x,, refer to the
number of the impact factors and the value of the k-th im-
pact factor of the i-th input sample, respectively. h (Z,)
in Eq. (3) is the Hermite polynomial and can be calculat-
ed as
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. 0.5 _0.25 j-1)/2
hi(Z) =) w729 " H(Z) $(Z,) (5)
and it can be given via the following recursion forms,

ho(Z) =1
h.(Z) =2Z.
(20 =22 (6)
h(Z) =2ZH, (Z) - (=D H,_(Z)

In Eq. (5), the standard Gauss function ¢(Z,) is calcu-
lated by

1 -Z/2
¢(Z)=—=" (7)
V2w
The optimal projection direction a and the optimal
number M of the ridge function are estimated by solving
the following minimization problems:

min P(a,,¢) = 73 (f(0) = /,(0)°

d=1

d=12,...,0;j=0,1,2...,r -1 (8)

where f;(x) is the actual value, and fi(x) is the fitted val-
ue of the model.

The optimization of the next ridge function will go on
by using &,, where &, =f,(x) —f,(x), until the optimiza-
tion terminal condition is satisfied, and then the number
of the ridge function stops being added and the combina-
tion output of the model’s parameters @, ¢ and M are im-
plemented. At this moment, the PPPR model is ex-
pressed as

F[(x) = z

k=1 j=

r—

! [4
0ckj.h[j( Yaux,) i=12,..T (9
d=1

where ¢;, a,, and x,, are the polynomial expansion coeffi-
cients of the k-th ridge function, the optimal projection
direction of the k-th ridge function and the d-th impact
factor of the i-th input vector, respectively; and F,(x) is
the final fitted value of the i-th output vector.

The core of building the PPPR model is to solve the
projection direction a, the polynomial coefficients ¢ and
the number M of the ridge function, and so the solution
to parameters @, ¢ and M determines the performance of
the model to a certain degree. In order to enhance the
generalization performance of the PPPR model and im-
prove the forecasting accuracy for the expressway short-
term traffic flow, this investigation tries to employ the
CCPSO algorithm to determine the projection direction a
of the PPPR model.

2 Modified PSO

Each particle has its position and velocity, where the
i-th position x, = {x,, x,, ...,
{vi, vy, ...

Xy} and the i-th velocity v, =
»Vot, i=1,2, ..., N, and it moves through a

Q-dimensional search space. According to the global va-
riant of the PSO, each particle moves towards its individ-
ual optimal position P{ and the global optimal position Pg
in the swarm. Let us denote the best previously visited
position of the i-th particle giving the best fitness value as
P} ={P}, P, ..., P} and the best previously visited po-
sition of the swarm, which gives the best fitness value as
PS = {P; , P:z, e PSQ }, where G is the number of itera-
tions.

The position change of each particle can be computed
during iterations according to the distance between the
current position and its individual optimal position P{ and
the distance between the current position and the global
optimal position Pg of the swarm. Then the updating of
the velocity and particle position can be obtained by using
the following equations:

G+1

G G G G G
Vg =wvgter (P —x.) +CZrZ(Pgd _'xgzl)

(10)

X =x vy (11)
where w is the inertia weight and is employed to control
the influence of the previous history of velocities on the
current velocity; ¢, and c, are the learning factors, which
are usually taken as 2, respectively; r, and r, are random
numbers distributed uniformly in the range [0, 1].

Based on the Cat mapping and the cloud model, the
CCPSO algorithm is proposed to improve the optimal per-
formance of the PSO. The procedure of the CCPSO algo-
rithm is illustrated as follows: When the PSO operates for
a certain generations mix_gen * gen, the particles of the
current swarm are sequenced in view of the fitness val-
ues, and divided into pop_distr * pop_size excellent indi-
viduals and (1 - pop_distr) * pop_size poorer individu-
als. For the pop_distr = pop_size excellent individuals,
the cloud model for local search is adopted to accelerate
the algorithm search speed, and for (1 — pop_distr) * pop
_size poorer individuals, the Cat mapping for implemen-
ting global chaos disturbance is used to increase the
swarm diversity. On the basis of the above processes, the
obtained new pop_distr * pop_size excellent individuals
and new (1 — pop_distr) * pop_size excellent individuals
disturbance are mixed to form a new swarm, which can
be used to execute the next evolution operation of the
PSO again. The hybrid control parameter mix_gen is em-
ployed to control the mixing times of the PSO algorithm,
the Cat mapping and the cloud model. The swarm distri-
bution coefficient pop_distr is adopted to determine the
distribution ratio of particles for local search and global
disturbance during the process of algorithm evolution.

2.1 Global search with the Cat mapping

The chaos optimization method is an optimization tech-
nique that has appeared in recent years, which makes use
of such properties as chaos ergodicity and sensitivity of
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initial values as its global optimization mechanism. How-
ever, the current PSO algorithm based on the chaos opti-
mization method mostly adopts logistic mapping''”, Tent
mapping'""" and An mapping'”” as the chaotic sequence
generator. Owing to the fact that the probability density
of the chaotic sequence generated by the logistic mapping
mostly obeys the Chebyshev distribution with more densi-
ty values at its both ends and lesser density values in its
middle, its acceptance values focus mostly on those in the
two ends of the density function. The chaotic sequence of
the Tent mapping may rapidly fall into a minor cycle or a
fixed point as a result of the limit of the computer’s word
length and precision. The chaotic variable quantity of An
mapping takes values from small to large and their occur-
rence number gradually decreases, so that the uniformity
of the generated variable quantity is unable to be guaran-
teed. Therefore, the Cat mapping with good ergodic uni-
formity and less possibility of falling into a minor cycle or
the fixed point is used to the global disturbance of the
PSO algorithm.
The two-dimensional Cat mapping equation is

X, =(x,+y,) mod 1 } (12)

¥, =(x,+2y,) mod 1

where x mod 1 =x —[x].

The specific procedure of the global disturbance of the
CCPSO algorithm with the Cat mapping is illustrated in
Ref. [8].

2.2 Local search with the cloud model

In consideration of the current value being closer to the
optimal solution after the evolution of the PSO algorithm
for a period of time in the process of searching for the op-
timal solution, more advantages are available around the
local optimal points. According to the social statistics
principle'”, the more the optimal point around the local
optimal points, the more opportunities of finding the opti-
mal solution in its surrounding. Therefore, in order to
improve the convergence speed of the PSO algorithm, the
normal cloud model is used to implement the local search
for the pop_distr * pop_size excellent individuals in the
current population.

Suppose that T is the value in the discourse domain u,
and map CT(x): u—[0,1], Vxeu, x—>CT(x), then
the distribution of CT(x) on u is referred to as the mem-
bership cloud under 7, which is called as “the cloud”,
for short. When CT(x) obeys the normal distribution, it
is known as the normal cloud model. The overall charac-
teristics of the cloud model can be represented by three
digital features, which are the expectation E, the entropy
S and the hyper-entropy H. The normal cloud generator is
employed to realize the local search of the more excellent
individuals. The specific procedure of the local search of
the CCPSO algorithm with the cloud model is illustrated

in Ref. [8].

3 CCPSO-PPPR Expressway Traffic Flow Fore-
casting Model

In order to improve the optimization efficiency of the
CCPSO-PPPR model,
taken as the fitness value of the individual evolution; that
is

the regression serial variance is

T
fitness(i) = LTZ (f,.j(x) _f,-,-(x))z (13)
=
where T is the number of the input samples; f,,j(x) and
f;(x) are the values of the regression sequence and the ac-
tual sequence, respectively.

Based on the CCPSO embedded optimal projection di-
rection a, the calculation procedures of the CCPSO-PPPR
expressway traffic flow forecasting model are as follows:

Step 1
the PPPR model’s parameters are normalized on the basis
of

The measured data and the initial interval of

x( i) = (x( i) - xmln) /( xmax - xmin)

where x( i) is the i-th value in the sequence to be treated;

(14)

X, and x_, are the maximum and minimum values in the
sequence to be treated, respectively.

Set the particle population size pop_size, the accelera-
tion constants ¢, and c,, the maximum evolution genera-
tion gen, the maximum optimization generation gen”,
the population distribution coefficient pop _ distr, the
mixed control parameter mix_gen, the relative error of
the optimal individual fitness value E, the number of the
maximum ridge functions L, and the minimum fitting re-
sidual error &, .
Step 2 The pop_size particles a = {a,, a,, ...

} in a feasible region [a,,,,, a;,,] according to the
0

constraint condition z afj = 1 are randomly generated as
j=1
the initial values of the projection direction a of the PPPR

7 SR
a

pop_size

model. The projection value Z, and its corresponding poly-
nomial expansion value /,(Z;) are calculated on the basis
of the input gained through training the sample set, and
the corresponding polynomial coefficient ¢; is computed
by using the least square method. The model regression
sequence is calculated according to Eq. (3). The fitness
value fitness(i) of the i-th father individual is obtained in
accordance with Eq. (13). Its speed is randomly initial-
ized, and the historical optimal position P| and the global
optimal position P; of the i-th particle are updated.

Step3 LetG=1, and g=1.

Step 4 If the current population meets the evolution
stopping criterion R, go to Step 8; otherwise, go to Step
5. The evolution stopping criterion R, adopts the combi-
nation of the maximum evolution generation gen and the
relative error E between the optimal individual fitness val-
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ues of two adjacent generations.

Step 5 If g <mix_gen * gen, go to Step 6; other-
wise, go to Step 7.

Step 6 The adaptive inertia weight factor w is calcu-
lated according to Eq. (15). The speed and position of
each particle in the particles population are updated on the
basis of Egs.(10) and (11), respectively. The fitness
values of all the particles are computed, and the current
individual optimal position P! and the global optimal posi-
tion P’; of pop_size particles are renewed. Let G=G +1,
and g =g +1; go to Step 4, then

(15)
gen

and w___ are the min-

min max

where w is the renewed weight; w
imum and maximum values of inertia weight, respective-
ly. In general, their acceptance values are 0.4 and 0.9,
respectively.

Step 7 The current particles are sequenced according
to their fitness values, which divides the whole popula-
tion into pop_distr * pop_size excellent individuals and (1
— pop _distr) * pop_size poorer individuals. The local
search for pop_distr = pop_size excellent individuals is
done in accordance with Section 2. 1, and thus the new
pop_distr * pop_size excellent individuals are obtained.
The overall chaos disturbance for (1 — pop_distr) * pop_
size poorer individuals is determined on the basis of Sec-
tion 2.2, and the new (1 — pop_distr) * pop_size excel-
lent individuals after disturbance are obtained. An elite
population with the population quantity of pop _size is
formed, and the fitness values of the pop_size elite indi-
viduals are calculated. Let G=G +1, and g =0, go to
Step 4.

Step 8 The fitting residual error &, =f;(x) —f,.(x) is
according to the current optimal parameter @ and its corre-
sponding polynomial coefficient ¢ obtained after optimiza-
tion. If the optimization termination criterion R, is satis-
fied, go to Step 9; otherwise, use g,,, instead of &;, and
return to Step 2 to optimize the next ridge function. The
optimization termination criterion R, adopts the combina-
tion of the maximum number L

max

of the ridge function,
the number of the maximum optimization generations gen
and the minimum fitting residual error &, .

Step 9 The impact factors are input to the PPPR mod-
el according to the global optimal parameter @ and its cor-
responding polynomial coefficient ¢, and the forecast val-
ues are computed according to Eq. (9).

The flowchart of the CCPSO-PPPR expressway short-

term traffic flow forecasting model is shown in Fig. 1.

4 Numerical Examples

4.1 Selection of influencing factors for expressway
traffic flow forecasting

The features of traffic flow are similar to those of the

Initialize father
generation group

Optimize the
next ridge function

OO0 |

Normalized input data and|
model parameters

Calculate evolution
Stoppng criteria R,
: Yes [ Calculate termination
Meeting R, Sl S
optimization criteria R,
No
( Update rate and location (PSO) )

G=G+1,8=8+1

N

o
a; population sorting

Better particle Worse particle

[0 O O O OO DO | put retevant factors |

Add the number of
ridge functions

No

Yes

New particle(pop_size )

Cloud model Cat mapping
local seachmg global searching

©O0 -0 O |0 O

O Ol | Calculate predicted value

G=G+1, 8=0

Fig.1 Flowchart of CCPSO-PPPR expressway short-term traf-
fic flow forecasting model

fluid features with a continuous distribution in time. The
next time interval’s traffic flow in some road section is in-
evitably correlated with that of the previous several time
intervals in the same road section. Therefore, the previ-
ous several time intervals’ traffic flow data in this road
section can be used to forecast the next time interval’s
traffic flow in the same road section. Suppose that 7 ex-
presses the current time interval of observing the traffic
flow; Y(tr-3), Y(t-2), Y(t-1) and Y(¢) are the first
four time intervals’ traffic flows in the forecasted road
section, respectively, and Y (¢ + 1) is the next time
interval’s traffic flow in the same road section mentioned
above. So the forecasted result of the traffic flow Y(z +1)
at t +1 is influenced by the combined action of the traffic
flows Y(¢r-3), Y(t-2), Y(t-1) and Y(1).

Considering that the travel of the expressway is subjec-
ted to the effects of weather changes, the fifth input pa-
rameter X, (¢) is introduced, which is set to be 1, 0.75,
0.5, 0.25 and O for heavy snow or heavy sleet, light
snow or light sleet, heavy rain, light rain and fine or
cloudy, respectively. Meanwhile, people’s travel habits
can also affect the traffic flow on expressways. One week
is taken as the forecasting period of the traffic flow,
which may have its different variation rules in different
days of each week and increase especially on the weekend.
Therefore, the travel date is taken as the sixth input pa-
rameter X, (#) of the model, which is set to be 1/7, 2/7,
3/7, 4/7, 5/7, 6/7 and 1(7/7) on Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday and Sunday, re-
spectively. Thus six influencing factors X, affecting the
next time interval’s traffic flow in the forecasted road sec-
tion, are obtained as the input vector of the model.

In this paper, the numerical experimental part adopts
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the partial traffic flow data obtained by using the west-
bound traffic flow detector on Changji Expressway in
Jiyuan City from May 1, 2010 to March 1, 2011, and its
sampling interval is 10 min. In order to verify the fore-
casting performance of the forecasting model under vari-
ous weather conditions, 500 groups of valid data under
various weather conditions are selected, and their quanti-
fication processing is implemented for their corresponding
weather conditions and sampling dates to form the train-
ing sample set of the model. 50 groups of valid data are
taken as the testing sample set.

4.2 Example forecasting and performance analysis

In the training process of the CCPSO-PPPR model, its
parameters are set as follows: The evaluation range of a
is [ —1,1]; the Hermite polynomial order is r =4; ¢, =
¢, =2.0, pop_size = 100; gen =500; mix_gen =0. 7,
pop_distr = 0. 7; the maximum ridge function number
L =4,

max

the change rate of fitness value of the optimal
individual for adjacent generation E =0.01; the minimum
fitting residual ¢, =0.001.

According to the CCPSO-PPPR hybrid optimization
process in Section 3, the combination of parameters a, ¢
and M is optimized, and the CCPSO-PPPR hybrid opti-
mization expressway short-term traffic flow forecasting
model is finally obtained as follows:

2 03
2 z Ck/‘hrj/(aklxil T ApXy T apX; +
k=1 j=0

Xy + AisXis + A Xe)

F(x)
(16)
where

{awtse =
[ 0.7189 0.1208 0.1292 0.4379

0.376 7 0.343 5
-0.176 5 0.1836 -0.2294 0.018 5 ]

-0.4833 0.8052
and

10.325
-51.679

-9.168
36.89%4

-8.236
-28.642

5.897
-49.865

{ij Yoxa =

The fitting residual error curves of the first and second
ridge functions are shown in Fig. 2. As we can see from the
two fitting residual error curves in Fig. 2 that the second

fitting residual error is obviously less than the first fitting
residual error; thus the increase in the number of the
ridge functions can clearly reduce the fitting error to make
the fitting sequence gradually approach the actual se-
quence.

281—6— The first fitting residual; —=—The second fitting residual
u | 9 9 .

il

The second fitting residual

0 100 200 300 400 500
Sample number

Fig.2 Fitting residual error curves

The forecasting model obtained through optimization is
used for the short-term traffic flow forecasting. The com-
parison diagram of the actual traffic flow and its traffic
flow forecasted by the model is shown in Fig. 3, and the
actual partial traffic flow and its forecasted results are
shown in Tab. 1. The comparison results show that the
forecasted flow curve basically coincides with its actual
traffic flow curve and their error values are controlled
within [ - 6, 6] on the whole, except for a few error
values.

—=— Actual value; —=— Predicted value

D—lsb—‘b—‘
[=))
S & 3
-0

Taffic flow/
(peu + 10 min 1)

0 10 20 30 40 50
Sample number

Fig.3 Comparison diagram of the actual traffic flow and its

forecasted traffic flow

In order to test the forecasting performance of the CCP-
the ARIMA
model, the PSO-BP neural network model, the conven-
tional SMART-PPR model and the PSO-PPPR model are
selected simultaneously for model building and simulation
forecasting. For ensuring the comparability of the four
kinds of models above, they are all programmed by using

SO-PPPR model proposed in this paper,

Tab.1 Excerpt from the forecasted results pcu/10 min
X, (1) X, (1) Y(t-3) Y(t-2) Y(t-1) Y(1) Actual value Forecasted value error
Light rain Sunday 136 133 128 125 119 116 -3
Heavy rain Monday 98 105 109 114 118 123 5
Cloudy Tuesday 123 126 129 134 136 132 -4
Fine Wednesday 92 97 96 94 92 86 -6
Light rain Thursday 113 116 118 122 126 129 3
Cloudy Friday 131 135 137 139 142 142 0
Fine Saturday 143 136 132 127 121 117 -4
Heavy rain Monday 100 94 95 90 86 88 2
Cloudy Friday 132 128 123 118 112 118 6
Fine Wednesday 101 115 123 129 134 137 3
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models above, they are all programmed by using Matlab
7.1 and run on the same computer. The conventional
SMART-PPR model is computed with edited SMART
software and debugged again and again under the various
combinations of the smoothing coefficient S,
mum terms number M of the ridge function and the opti-
mal combination term number M,. When S=0.5, M =2
and M, =4, the fitting effect of the model is at its best.
Considering that the optimization effect can be improved
by increasing the optimizing times, the maximum number
of iterations of the PSO-BP and PSO-PPPR models should
be the same as the number of iterations of the CCPSO-PP-
PR model. Meanwhile, for making a comparative analy-
sis on the performances of the three models above, three
evaluation indices are adopted as follows.
1) Mean absolute relative error (MARE) :

the maxi-

Y(1) - ¥(1)
MARE = o e 17
Zl‘ Y(1) (7
2) Maximum absolute relative error (MAXARE):
_ Y(r) - ¥(1)
MAXARE = max 70 (18)
3) Root mean square error (RMSE):
Y(1) - ¥( t))
RMSE = 19
\/ z Y(r) ()

where Y(7) and Y(7) are the actual traffic flow value and
the forecasted traffic flow value obtained by the used
model at time ¢, respectively.

The testing of five models are implemented according
to the given comparison model parameters and the actual
traffic flow data, respectively.
the five trained models are calculated by inputting the in-
fluence factors.

The forecasting values of

Three kinds of error indices of the five
forecasted traffic flow values are shown in Tab.
(18) and

models’
2, which are obtained by using Egs. (17),
(19).

Tab.2 Comparison of the forecasted error index of five kinds

of models %
Model MARE MAXARE RMSE
PSO-BP 12.32 14.97 12.54
ARIMA 6.08 10.76 7.12
SMART-PPPR 9.29 12.38 10.83
PSO-PPPR 6.24 11.76 7.29
CCPSO-PPPR 5.12 10.24 6.38

As seen in Tab. 2, the ARIMA model, the SMART-
PPPR model, the PSO-PPPR model and the CCPSO-PP-
PR model are obviously superior to the PSO-BP neural
network model in forecasting the model’s performance
based on different structures, and the forecasting accuracy
of the PPPR model based on the PSO algorithm is superi-
or to the SMART-PPPR model which adopts the conven-

tional layer and group iteration alternating optimization
method. All evaluation indices of the CCPSO-PPPR mod-
el are superior to those of the PSO-PPPR model, and the
CCPSO-PPPR model obtains higher forecasting accuracy
than that gained by the ARIMA model and the CCPSO-
PPPR model.

5 Conclusion

The CCPSO-PPPR expressway short-term traffic flow
forecasting model overcomes some shortcomings of the
PPPR model regarding the difficulty in selecting model
parameters and the low accuracy of the forecasted results,
and it improves the generalization and self-study capaci-
ties of the PPPR model. In the forecasting process, the
influence of such factors as the traffic flow of the first
four time intervals of the road section, the weather and
the travel dates are comprehensively considered in this pa-
per, and the data assurance can be provided for the accu-
rate forecasting of the traffic flow. The simulation fore-
casting results for some expressway traffic flow examples
show that the forecasting accuracy of the CCPSO-PPPR
model is superior to those of the other four models,
the absolute error of the actual and forecasted traffic flow
values are basically controlled within [ -6, 6], which im-
proves the forecasting accuracy of expressway traffic flow
Based on the
real-time information of traffic flow data, weather, date
etc., the expressway short-term traffic flow may be fore-
casted dynamically and accurately through continuously
updating the model’s parameters. The theoretical proof of
the CCPSO-PPPR model and the quantification criteria of
its relevant weather and travel date need to be further re-

and

and can meet its application requirements.

searched.
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