Journal of Southeast University ( English Edition)

Vol. 29, No. 3, pp. 346 351

Sept. 2013 ISSN 1003—7985
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under weighted /;, norm and /_, norm on trees
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Abstract: This paper focuses on the 2-median location
improvement problem on tree networks, and the problem is to
modify the weights of edges at the minimum cost such that the
overall sum of the weighted distance of the vertices to the
respective closest one of two prescribed vertices in the
modified network is upper bounded by a given value. [, norm
and /_ norm are used to measure the total modification cost.
These two problems have a strong practical application
background and important theoretical research value. It is
shown that such problems can be transformed into a series of
sum-type and bottleneck-type continuous knapsack problems,
respectively. Based on the property of the optimal solution,
two O (n’) algorithms for solving the two problems are
proposed, where n is the number of vertices on the tree.
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he network location problems consider how to find
Tthe best locations for p critical facilities in a given
network to provide rapid and effective service. Generally
speaking, the best locations for p critical facilities are to
minimize the overall sum of the weighted distance of the
vertices to the respective closest facility,
known as network p-medians. However, the surrounding
environment may have changed with the development of
the economy, so the old network median facilities may
not be in the optimal location. As moving an existing fa-
cility may be more expensive than improving the facility
network, three classes of inverse network location prob-
lems are proposed. The first class is the inverse network
location problem'™, which is to modify the vertex/edge
weights at the minimum cost such that the given p verti-
ces become the p-medians (centers). The second class is
the reverse network location problem[H],
modify the vertex/edge weights within a certain budget to
minimize the sum of the weighted distances of p-medians

which are
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(centers) in the modified network. The third class is the
network location improvement problem'®”,
modify the vertex/edge weights at the minimum cost such
that the sum of the weighted distances of p-medians ( cen-
ters) in the modified network is upper bounded by a given

value.

which is to

For the inverse 1-median location problems under [,
norm by modifying the vertex weights on trees, Burkard
et al. "' proposed an O(nlogn) greedy algorithm. Guan et
al. ""'solved the problem under /, norm and bottleneck-
Hamming distance in O(n) time, but the problem under
weighted sum-Hamming distance was shown to be NP-
hard.

For the reverse median location problems, Berman et
al. ' considered the problem on a tree by shortening the
edges to minimize the weights distance of the shortest
path and showed that it can be solved in strongly polyno-
mial time. Burkard et al. " transformed both the reverse
2-median problems on trees and the reverse l-median
problems on special cacti to the reverse 3-median prob-
lems on paths, and proposed an O(nlogn) algorithm.

For the 1-median location improvement problem, Bai
7 proved that the problem under the Hamming dis-
tance on a general graph and a cycle are all NP-hard, and
proposed a pseudo polynomial time algorithm based on
the dynamic programming method.

In this paper, we consider the 2-median location im-
provement problems on a tree under weighted /, and [

etal.'

norms by reducing the lengths of edges, which are simply
denoted by problems 2MLIP, and 2MLIP_, respectively.
Two polynomial time algorithms are presented to solve

w ?

them.
1 Problem Formulation

In this section, we first construct the mathematical
models for problems 2MLIP, and 2MLIP_, then trans-
form them into some sum-type and bottleneck-type con-
tinuous knapsack problems, respectively.

Let T=(V, E) be a tree network, and \ \% \ =n. Let/,
and [ denote the length and the reduced length of edge
e,, respectively. The reduction x, =1, — [
bounded by u,, where 0<u, <[,. The distance d'(v,, V)
means the length of a shortest path from v, to v, with re-
spect to /.. Denote c, the cost of reducing one unit length
of e;. Assume that s and ¢ are the two prescribed vertices,

of e, is upper
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and the problem is to reduce the lengths of edges such
that the sum of the weighted distances of the vertices to
the closest vertices in s and ¢ is no more than the given
upper bound U.
measured by weighted /, norm and [, norm. The mathe-
matical models of problems 2MLIP, and 2MLIP_ can be
respectively formulated as

The objective is to minimize the cost

min Z X,

eeE
S. t. w, mind' (v, v
2 mind' (v, v) <

OijSuj,ejeE

min max CX;
e ek

s. t. Zw mind' (v‘,v)

VeV ve (st}
Oijsuj,ejeE

Let P[s, t] be the unique path from vertex s to ¢, and
say P[s,t] ={e,, e,, ..., e, }, E-Pls, t] = {ep, e
cn€, 1}

Definition 1 & is called as a critical index in path P
[s, 2] with respect to the modified edge length [”, if
mind' (v, V) = d" (s, Vo), vlgl(i:.r})d[' (v, v,,,) = d (1,

ve (s 1}
V,.,), where (v,,v,,,) e P[s,1].

If all the edges of path P[s, f] are deleted from the tree
T, then T is divided into p disjoint subtrees. The subtree
rooted at the only vertex v, of P[s, t] is denoted by T,.

p+12

Furthermore, we write r(v) =v, if ve T, and v, € P[ s,
t]. Now a new weight w, for vertex v, € P[s, t] is intro-
duced by

=Y w, (1)

veT,

For a fixed index k=1,2, ...
for edge e, e T is introduced by

, P, a new weight vector

W= (2)
S’ﬁg i=k+1,...,p-1
g‘f +1
] w, i=p+1,...,n-1
{vie,e P[v,r(v)]}

Lemma 1 When £ is the critical index, the weighted
distance of 2-medians s and ¢ with respect to [*
calculated by

can be

n-1

Zw mind' (v,,v) = Z(l, - x) W, (3)

VeV ve (st}

Proof Note that d' (v, r(v,)) =0 if v, € P[s, t].
Hence, for vertices v, e V and v e {s,t}, d (v, v) =

d (v, r(v)) +d (r(v,),v), so

Zw mind' (v,,v) = Y wd (v, r(v)) +

ve (s t} VeV

ZW mmd (r(v),v)
vieV
Obviously, the weighted distance of 2-median can be
divided into 2 terms. The first term is the weighted dis-
tance of 1-median on trees, and the second term is the
weighted distance of 2-median on paths.
terms based on the critical index k.

Simplify the two

Zw‘.d]‘(v[,r(v[)) = z (w[ Z (l[—x[)) =
VeV VeV e;e PLv, r(v)1

(3 wd-w=
vigpls. il \ {vieePlv,r(v)]}
z (ll - 'xi)Wf (4)

i=p+1

ZW mmd (r(v) V) =

v,ieV

2, min (3, w)d (v

viel,

V) = ZW mind' (v,,v)

ve (st}

Z(Wd (s,v)) + Z(Wd (t,v)) =

w]i(ll—x)) + Y (w.i(l,.—x,-))

j= i Jj=k+1 i=j
k
(l,—x)ZW + Z(Z —x)Zw =
r=1 Jj=r+l r=k+1 Jj=k+1
k
S - x) W+ 2(1, —x)W =
r=1 r=k+l1
P
(L =x)W, (3)

i=1

So the weighted distance of 2-median can be denoted
by the sum of Eqs. (4) and (5).

Problems 2MLIP, and 2MLIP _ with the critical index k
can be stated respectively as the following problems P,
and P_,

n-1
min Y c,x,
i=1

n-1 n-1

s. t. YW= Y LW -U
i=1 i=1

O<x,<u,e ek

min max C.X,;

I<isn-1

n-1 n-1

k

s. t. x, W, = LW, -
i=1 i=1

ES

0<x;<u;,e;eE

Problems P, and P_, are well-known continuous knap-
sack and bottleneck-type continuous knapsack problems,
respectively. So problems 2MLIP, and 2MLIP
transformed into some continuous knapsack and bottle-
neck-type knapsack problems corresponding to the critical
index k, respectively.

can be
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2 O(n*) Algorithm for 2MLIP,

In this section, some properties of optimal solutions for
problem 2MLIP, are proved, and an O(n’) algorithm of
problem 2MLIP, is devised based on the algorithms of
continuous knapsack problems.

n-1

Obviously, if 2 (lj - u) Wf > U, then the problem
i=1

n-1

has no feasible solution. If z l ij < U, then the opti-
j=1

mal solution is x =0. Without loss of generality, we as-
n-1 n-1

sume that Y ([, —u)W, < U < Y LW, .
j=1 j=1

Lemma 2 When k' is not critical index k,, then

2 W, mind (v,v) < ¥ Wwd (st,i, k'), where
i=1 velst i=1
A d (s,v,) i<k
d (stik') =4 .
d (t,v,) i=k'+1

Proof
P[s, t] with respect to [,

Assume that k, is the critical index on path

and mind' (v, V) =d (s,

ve (st}

Vi) s Ym(in}dlr(\/, v.) =d (t,v,,,). Let
d (s,v,)

mlnd (v, v) =9 .
ve st d (t, V-)

We only need to show that m1n d (v, v, D) <d (st i,
k") when k' = k,. In the case k <k0, we can prove it
similarly. Next we consider the following three cases
when k'=k,.

1) Ifisk, <k,
d" (st i, k).

2) f ky<is<Kk,
d (s,v,) =d (st,i,k").

3) If k, <k'<i, then mmd (v,v,) =d (t,v,) =
d (st i, k).

then min d' (v, v;) =d" (s, v,) =

ve s t}

then min d' (v, v,) =d (t, V) <

ve s 1}

P

Therefore, Zw mind' (v, V) <

ve{s 1}

P

> w.d (st i, k)
i=1

holds for k' =k, and similarly for k' <k,.

Lemma 3  Let the feasible regions of problems
2MLIP, and P,, be D and D,, respectively. Then D =

P
kL:J] D,.

Proof Assume that D’

DCD'. Suppose that x is a feasible solution in D. Then
the critical index k can be determined by the modified
length vector *

P

= U D,. First, we show that
k=1

=[] —x. Then we know that x is a feasible

solution in D, for some critical index k by Lemma 1, thus
DCD'.
Now we show that D' C D. For all x e D', there must

n-1

exist | Sks<p -1 satisfying x e D, then Y (I, — x) W,
i=1

<U.
1) If k is the critical index, then we have
n-1
Zw mlnd (v v)—Z(l—x)W Uby Lemma 1.

VeV ve{s.t}
2) If k is not the critical index, we can obtain the
following results:

Y w, mind' (v, v) =

VeV ve (s t}

de (v, r(v,)) + ZW mlnd (r(v) V) =

n-1

Z(l,. —x,.)W + ZW mind' (v,,v)

i=p+l ve (s

n-1

N (L -x) W+ zmd’“(st, ik) =

i=p+l

n-1

N (L -x) W+ ZWd’(s v) + de (t,v,) =
i=p+l i=k+l1

n-1

N (L -x) W + 2(1,. —x)W, =
i=p+l i=1
n-1

2

The second equality holds by Eq. (4). The inequality
holds based on Lemma 2. The fifth equality holds by Eq.
(5).

Thus, whether k is the critical index or not, we have x
e D, and therefore D' CD.

Note that the objection functions of problems 2MLIP,
and P, are the same, so the optimal value of 2MLIP, is
the minimum one among p — 1 optimal values of continu-
ous knapsack problems P,,, which can easily lead to the
following two theorems:

Theorem 1  The 2-median location improvement
problems on trees under weighted /, norm can be solved
by p — 1 continuous knapsack problems P,,, where 2 <p
sn-1.

Theorem 2
problems on trees under weighted /, norm can be solved
by p — 1 bottleneck-type continuous knapsack problems
P

-x)W, <U

The 2-median location improvement

w» Where 2<p<n-1.
Next we will transform problem P, into the standard
continuous knapsack form and propose an O(n’) algo-

rithm to solve problem 2MLIP, .

pf = M[Wf’ b, =

zzw*_

u;. Then, the objective functlon of problem P,

n-1 n-1 n-1
Y ¢ —max Y ¢x, .
i=1 i=1

we only need to solve the following continuous

~ xi
Letx, =1 -—,
ui

U, ¢ =c

i
can be written as min z cx, =
i=1

Thus,
knapsack problem CP,, to solve problem P,;:
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O<x<l,1<isn-1

C.
k k k k
Let u; =— and assume that u, =u, =...>u, _,.
p;

Definition 2 e, is named as the critical edge if r =

j
min{j: Z[J,k = i)k}.
i=1

[8]

The greedy idea™ can lead to the following theorem:

Theorem 3 The optimal solution x of problem CP, is

&l j=12,..,r-1
% -1
p: J=r
H »
lol j=r+1,...n
The corresponding optimal solution of P, is x;" =u,(1
-x), j= 1,2, ..., n and its optimal value is
-1
n-1 Z
Ju = Z&i_ér%;\:l (6)

where e, is the critical edge.
So the key to solve problem CP, is to find the critical
edge e,.

Balas and Zemel"

proposed an O(n) algorithm to find
such a critical item. The detailed algorithm for problem
2MLIP, is stated as follows:

Algorithm 1

Input the weight vector w of vertices, the length vector
I, the upper bound vector u and the cost vector ¢ of ed-
ges, and two prescribed vertices s, 7.

Search the path P[s, t] = {e,, ..., ep,l} by BFS, and
compute the weight W' of edges by Eq. (2), where p<i
sn-1.

Initialize f: =, y: =0

Fork=1top-1do

Compute the weight W' of edges by Eq. (2),
<isp-1.

n-1

If z (L, —u) Wf > U, break (There is no feasible so-
j=1

where 1

lution for problem P,,);

n-1

else if 2 lef < U, the optimal solution of P, is y,:
j=1

=0, and its optimal value is f,: =0
else call the critical item procedure in Ref. [4] to solve

problem P,,. Let f, : =f,,(The optimal value of problem
P,), and y,: = x° ( The optimal solution of problem
P,).

Iff<f,, then f:=f; y:=y;

Output the optimal value f of problem 2MLIP, and its
optimal solution y.

Now we analyze the time complexity of Algorithm 1.
It runs at most n iterations and the main work in each iter-

ation is to call the critical item procedure in O(n) opera-
tions'”. So the time complexity of Algorithm 1 is
o(n*).

3 0(n*) Algorithm for 2MLIP

Similar to Section 2, some properties of the optimal so-
lution for problem 2MLIP_ are proved and an O(n’) al-
gorithm is proposed based on the algorithm of the bottle-
neck-type continuous knapsack problems.

n-1

Assume that U’ = z I.WS — U. We first consider the
i=1

unbounded problem P;,, and its mathematical model can
be formulated as follows:

min max C.X;

I<isn-1

s. t. ix[Wf =U
i=1

To minimize the maximum cost, we need to make c,x;,

equal for any edge e,. Assume that the optimal objective

n-1 -1
value of P’k is O, then x, -2 and DAY QWf‘
i i=1

_QZ >

n-1 k
ously, Q QO is the optimal value of P/, and x;, =0,/c,
is its optimal solution.
Theorem 4 If problem P
that E,: ={e,eE | ¢, <f,,}, then the optimal value and
the optimal solution respectively are

- ZMI.Wf

. Hence Q0 = Q,: . Obvi-

is feasible, and assume

wk

for=—oo— (7)
Y Wi/e,
ek
u, e ek,
X, = 8
’ ]% e ¢k, ©®

Proof Note that f, is the optimal value of problem
P_,, thencx, =f,  foranye ¢E,, andx, =f_ ,/c,<u,.
It is easy to know that f,_, is also the optimal value of the
unbounded case:

min maxc,x;
e ¢k,
k
5. L. YxW =U - Y uW
e gE, e,eE,

And hence the optimal value f,, is calculated by Eq.
(7).

Now we show that x is an optimal solution of problem

P_.. Obviously O<sx,<u,, i=1,2,...,n-1. We have
n-1
S = S W e W = Y s Loty -
e,eE, e,gE, ,
U - ZMW Wk
S u Wi+
Py aek, C;

eeEy Y
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SuW +U - Y uW =U

¢ cE, ¢cE,

Therefore, x is the feasible solution, whose object val-
ue is the optimal value. Hence it is an optimal solution of
problem P_,.

Next we present the main idea to solve problem P_,.
Note that ¢, =c,u;,, i=1,2,...,n—1. Sort the values ¢, in
a non-decreasing way, and say ¢, < C,, < ... <C.y-
f.., must be in some interval (¢, C,;,, ], and the opti-
mal solution is x, =u, if i<7(j), and x, <u, if i > 7(j).
So we only need to find the critical edge.

Assume that

¢

E.:={eecE|¢, <A}, E_: ={e,eE|¢, =2}

E.:={e,eE|¢,>A)

. =maxc, = max c,
1. eck. U iy e,cE_UE, '
k k
Wi Wi ~
AR R RED
eeckE_ C[ eckE. C[ eckE_

Since

Coiy <Sar <Crjiy) )

the critical cost ¢_, is obviously the unique solution of the

7(J)
pair of inequalities

fity <U = Y uW, < fit, (10)

eck.

Let us detail the algorithm of the bottleneck-type con-
tinuous knapsack problem according to Ref. [3].

Algorithm 2

Input the weight vector w of vertices, the length vector
I, the upper bound vector u and the cost vector ¢ of ed-
ges, and two prescribed vertices s, t.

Initialize E_: =, E_: =E, E_: =, t,: =0,

patition: = “no”,A: =U'.

While patition: =“no” do

Determine the median A of the set of values {¢,
E_}.
Let E,;: ={e,eE_|¢, <A}, E;: ={e,eE_|¢, =)},

e e

E,:={e,eE, |¢, >A)}, f,: =max¢,, f,: = max ¢,
e¢ek, e, e E\UE,
Wi Wy
Compute ,: = Y, —+ > —+1, A =A- Y u,.
ek, C; ek C; e E,

If f,t, <A, <f,t,, then patition: =“yes”
elseif A, <ft,, then E.: =E_UE UE,,

w; w;
t: = ’ ~+t,, E_: =E
] ack C; ¥ e;: & th ) 0
else if f,t, <A,, then J: ={eeE |¢,=f,} and E,: =J
UE, UE,.

Update E_: =E_UE,, E_: =E,\J, E_: =E_UE,,
Update E_: =E_UE,, E.: =E, UE, UE,.
Output the optimal value f,, and optimal solution x,” by

Eqgs. (7) and (8), where E, is replaced by E _.

Algorithm 3, which is to solve 2MLIP_,
Algorithm 1. The only difference of the two algorithms is
the last “else” part. Algorithm 3 is to call on Algorithm 2

is similar to

to solve the bottleneck continuous knapsack problem P_,.
Algorithm 2 can be done in O(n) operations similar to the
algorithm in Ref. [3]. Hence the time complexity of Al-
gorithm 3 is O( n’).

4 Conclusion

In this paper, we mainly explore the issue of the 2-me-
dian location improvement problems on trees under
weighted /, and [, norms. We show that the two prob-
lems can be transformed into a series of sum-type and
bottleneck-type continuous knapsack problems,
tively. And hence they can all be solved in O(n’) opera-
tions.

For further research, we can consider p-medians loca-
tion improvement problems on general networks and spe-
cial networks including trees, cycles, etc. The cost in-
curred by the modification of vertex weights and edge
weights can be measured under weighted /,, [ norms and
weighted Hamming distances.

respec-
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