Journal of Southeast University ( English Edition)

Vol. 29, No. 3, pp. 352 —354

Sept. 2013 ISSN 1003—7985

Ground states for asymptotically periodic quasilinear
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Abstract: For a class of asymptotically periodic quasilinear
Schrodinger equations with critical growth, the existence of
ground states is proved. First, applying a change of variables,
the quasilinear Schrodinger equations are reduced to semilinear
Schrédinger equations, in which the corresponding functional
is well defined in H' (R"). Moreover, there is a one-to-one
correspondence between ground states of the semilinear
Schrodinger equations and the quasilinear Schrodinger
equations. Then the mountain-pass theorem is used to find
nontrivial solutions for the semilinear Schrodinger equations.
Finally, under certain monotonicity conditions, using the
Nehari manifold method and the concentration compactness
principle, the nontrivial solutions are found to be exactly the
same as the ground states of the semilinear Schrodinger
equations.
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1 Introduction and Statement of Main Result

As the models of physical phenomena, the quasilinear
Schrodinger equation

—Au+V(x)u —uA(u’) =1(x, u) (1)

has been extensively studied in recent years. For the de-
tailed physical applications, one can see Ref. [1].

Many studies about Eq. (1) have focused on the exist-
ence of nontrivial solutions”™. Especially, the study
concerning the ground states of Eq. (1) has attracted many
researchers’ attention due to its great physical interests. In
Ref. [2], the authors obtained the ground states of Eq.
(1) with I(x, u) =\ \ u \ “~?y. Later, Liu et al. "' studied
positive and sign-changing ground states of Eq. (1) with
I(x,u) = | u|"? u and general quasilinear equations.
Recently, Liu et al. 4 completed the results in Ref. [ 3]
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of Eq. (1) with I(x,u) = |u|> u+ |u|* u

Inspired by Refs. [4 —5], we are interested in the ex-
istence of ground states for asymptotically periodic quasi-
linear Schrédinger equation (1). We consider

—Au+ V() u —ul(u’) =Kx) |u|® u+g(x, u)
ueH (RY) (2)

Let F be a class of functions 7 e C(RY) NL” (RY),
such that for every € >0 the set {x e R": \ h(x) \ =€}
has a finite Lebesgue measure. Suppose that V, K e C
(R"Y) satisfies the following conditions:

H,) There exists a constant a, >0 and a function V, e
C(R"Y), 1-periodic in x;, 1<<i<N, such that V-V, eF
and V,(x) =V(x) =a,, xeR".

H,) There exists a function K, e C( R"Y), 1-periodic in
x,, 1<i<N, and a point x, € R" such that K — K,eF
and

@ K(x) =K, (x) >0, xeR";

@ K(x)=|K|,+0(|x=-x, "), as x—x,.

u

Let G(x, u) = f g(x, s)ds and assume that g e C(R" x
0
R, R) satisfies
H,) g(x, u) =o(u) uniformly in x as u—0;
H,) |g(x,u) | <a(l+ |ul?’"), for some a >0 and
4<q<22";

Hy) ub— g‘(x, ‘ug is nondecreasing on ( — «,0) and
u

(0, ).
H,) There exists a neighborhood of x, given by H,), 2
CR", such that

) %—»m uniformly in Qas |u | —ow if3<N
u
<10;
@ L"‘u)ﬂw uniformly in Q as | u | - if N>

u
10.

H,) There exists a constant ¢, € (2,22 "), functions &
eFand g, e (( R" xR, R) such that

@ g, is 1-periodic in x,, | Si<N;

@ [gxw) ~g,(xu) [ < |h(x)

Clul + [ul™™,

xeRY;
@ G(x,u) =G, (x,u): = jogp(x, s)ds ;
@D u I—»W is nondecreasing on ( — «,0) and
u
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(0, (e ] ) . 1 2 ’
— (L V(x v,) = V(x v v)v, | +
Theorem 1 If H) to H,) hold, then the problem (2) 2 ﬁ (f(v,) Of v, ]
has a ground state. 1 [ 22 ,
K [f(v,) | (v)f' (v)v, -
Remark 1 H,) and H,) imply that 2 f f fvf
1 22"
osG(x,u)s%g(x,u)u VueR, xeR' (3) 5 K(x) [7(v,) *
1 ) -
2 Variational Setting f[ig(x,f( v (), = Gl f(v,)) ] FT
I +1, +1, (6)
In the sequel, j h(x)dx is represented by J’h .S ={u . .
R” By Lemma 1 (8) in Ref. [5], we obtain
eH' (RY): ||ul®>=1}. Observe that the functional of 1 .
the problem (2) 1, 20712227Vianf‘f(vn) |® (7)

J(u) = ;—f(l +20%) | Vul? +;—fV(x)u2 -

1
22°

[k [u ™ = [6(xw

is not well defined in H'(R"). Choose the change f de-
fined by

w1

A =-f(-1) on(-0o,0]

on [0, )

and set v=f ’l(u) , then we obtain

1) = o[ 1 9v "+ Voo -

1
22°

[KGo A 17 =[G foon)

which is well defined in H' (R") by the properties of f
(see Ref. [5]). The critical points of / are weak solutions
of

—Av+ V() (W F(v) =K(x) | fO0) |2 2 f(v) +
g(x, fv)f(v)  veH (R (4)

Similar to Ref. [5], we first prove that there is a non-
trivial solution for Eq. (4). We know that the results ob-
tained under (V), (K), (g,), (g,) and (g5) in Ref. [5]
still hold since the conditions H,) to H,) and H,) are the
same as (V), (K), (g,), (g,) and (g,), respectively.
However, H;) and H,) are different from (g,) and (g,)
in Ref. [5]; in the following, we verify whether the re-
sults under (g,) and (g,) still hold.

Lemma 1 Let H)) to Hy) hold. Then, the (Ce),(b
>0) sequence v, of I satisfying

I(v)—b, [I'(v) 11+ v, [H—0 (5)

is bounded.
Proof As in the proof of Lemma 4 in Ref. [5], we

only need to show that J | v,) | * is bounded.
By (5), we have

b+o,(1) =1Iv,) —%(1’(\/”),\/"} =

For I, , using Lemma 1 (8) in Ref. [5] and inequality
(3), we have

8O (50,)v, 28 (5.0, )f(v,)

Then from (3) it follows that 7, =0. Combining with
(6) and (7), f | f(v,) | ® is bounded. This ends the

proof.

In Ref. [5], the authors supposed that | g(x,u) —
g, (x,u) | <h(x) |ul®", g,€[2,22"), and we as-
sume that | g (x,u) -g,(x,u) | <h(x)( lul +
lul*"), g, e (2,227). So Lemma 9 in Ref. [ 5]
holds under H, ), H,) and H,). Following the outline in
Ref. [5], we have the following lemma.

Lemma 2 Let H,) to H,) hold. Then the problem
(4) possesses a nontrivial solution u such that I(u) =c¢
with ¢ = inf mgl)](]l(y(t)) >0, where I' = {y e

yel tel0,
C([0,1], H'(R")):y(0) =0,1(y(1)) <O}.
In order to find ground states, we also need to intro-
duce the Nehari manifold. The Nehari manifold corre-
sponding to Eq. (4) is

M={ueH (R)\{0}: (I'(u),u) =0/

First, we give the following lemma in which the simple
proof is left to the reader.

Lemma 3 Let H,) to Hy) hold. Then I(fu)— — o
as t—oo , ue H' (RY)\{0}.

Inspired by Ref. [6], we have

Lemma4 Let H ) to Hy) hold. Then for all v e
H' (RY)\ {0}, there exists a unique ¢, >0 such that 7 v e
M and I(t,v) = max I(tv).

Proof For any ve H' (RY)\{0}, as in the proof of
Lemma?2 (I,) in Ref. [5], we can easily obtain I(v) >
0 when ¢ is small enough. Lemma 3 implies that I(#v) —
Therefore, there exists 7, > 0 such that
di(w)

|,
£(t) =1(tv), t>0. Then ¢, is the maximum point of /.

Note that

— 00 as f— .

I(t,v) = max I(wv), =0. Then t,ve M. Set
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(0 = () w) =1 | 90+ [Ver () -
KGO L) 122 () -

et mv) - =
1TV 3+ @ (1) +@,(1) + (1)

By Lemma 1 (8) in Ref. [5] and the fact that f"(v)
= —2f(tv)f*(tv), we obtain

£ (1) = f[f’z(tv)tvz =2 () () v -

S ()v]V(x) < [LAm)f () =
21 () () v’ = () (tv)v]V(x) <0
So &, is decreasing.

Using Lemma 1 (8) and (10) in Ref. [5], and the
fact that f"(v) = =2f(tv)f* (tv), as before, we obtain
that @', (t) <0. Then @, is nonincreasing.

__[8Gef(v)) [f(w) [f (ev)v

Note that @, (t) _—j o) |0 ;

[f() \3f(tv)v. As before
t

Let B, (t) =

, we obtain

that #B’,(t) =0. Then @, is nonincreasing by H;). So
the maximum point of ¢ is unique. This ends the proof.

Define i; H' (RY)\{0} —M by i(u) =t,u and m: =
| s,- Then m is a bijection from S, to M. Letc” = itﬂ}fl,
and Lemma 4 implies that

=inf I(m(u)) = inf I(/M(u)) = inf maxl(tu)
ues, ueH'(RM)\{0}

ueH' (RV)\| 1=
(8)
Lemma 5 Let H,) to Hy) hold. Then ¢” =c.

Proof For ue H' (R")\{0}, Lemma 3 implies that
lim I(fu) = — o . Then there exists #, large enough such

%

that I(t,u) <0. Choose y,(t): =ttyu, 0<t<1. There-
fore, c<max I(y,(t)). Soc< inf max/I(rm).
0=r<l ueH'(RV)\|0} te[0,1]

From (8) it follows that ¢* =c.

3 Proof of Theorem 1

Proof By Lemma 2, we assume that there is a non-
trivial solution w with I(w) =c¢. Then we M. So I(w)
=c". Note that I(w) =c¢ and ¢” =c, and we obtain
I(w)<c". SoI(w) =c". Then we can easily infer that
w is a ground state for Eq. (4). We complete the proof.
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