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Abstract: In order to achieve higher spectrum efficiency in
cognitive radio (CR) systems, a closed-form expression of the
optimal decision threshold for soft decision cooperative
spectrum sensing based on the minimum total error probability
criterion is derived. With the analytical expression of the
optimal decision threshold, the impact of different sensing
parameters on the threshold value is studied. Theoretical
analyses show that the optimal threshold achieves an efficient
trade-off between the missed detection probability and the false
alarm probability. Simulation results illustrate that the average
signal-to-noise ratio (SNR) and the soft combination schemes
have a great influence on the optimal threshold value, whereas
the number of samples has a weak impact on the optimal
threshold value. Furthermore, for the maximal ratio combing
(MRC) and the modified deflection coefficient ( MDC)
schemes, the optimal decision threshold value increases and
approaches a corresponding individual limit value while the
number of CR users increases. But the number of CR users
has a weak influence on the optimal decision threshold for the
equal gain combining (EGC) scheme.
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he inflexible and fixed spectrum allocation in con-
Tventional wireless networks has been shown to en-
courage under-utilization of the spectrum. The cognitive
radio (CR) has emerged as a promising technology to
solve this problem through opportunistic access of the
spectrum by unlicensed CR users, if non-harmful interfer-
ence to the licensed primary user (PU) is guaranteed'".
To ensure that the PUs are sufficiently protected against
interference from the CR users, CR users should periodi-
cally perform spectrum sensing to obtain reliable results of
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the PUs’ activities'

Generally, spectrum sensing strategies are categorized
into four basic kinds: energy detection, coherent detec-
tion, cyclostationary feature detection and eigenvalue-
based detection. Due to its simplicity and efficiency, en-
ergy detection is recognized as a preferred scheme for
practical implementation. To enhance the overall sensing
accuracy, cooperation between multiple users is also sug-
gested. Cooperation among CR users is usually coopera-
ted by a fusion center (FC) through two types of fusion

[3-4

rules: hard decision fusion rules "™ and soft decision fu-

sion rules 7.

In this paper, soft decision fusion rules
are investigated,
served by different CR users are combined to make a sat-
isfactory decision.

Generally, the performance of spectrum sensing de-
pends greatly on the setting of the decision threshold.
Threshold selection can be viewed as an optimization

problem. Some research work has been done for this

in which accurate energy values ob-

problem based on different objectives in Refs.[7 —10]. In
the Neyman-Pearson framework, the decision threshold is
determined by a given target false alarm probability'*® .
However, detectors under this scheme cannot achieve the
minimum total error probability. In Ref.[7], based on the
minimum total error rate criterion, the authors discussed
the optimal decision threshold for hard decision cooperative
spectrum sensing and the optimal decision threshold can be
evaluated numerically. The main contribution of this paper
is the derivation of a closed-form expression of the optimal
decision threshold for soft decision cooperative spectrum
sensing, which is based on the minimum total error proba-
bility criterion. The impact of different sensing parameters
on the optimal decision threshold value is analyzed.

1 System Model

In this section we investigate cooperative spectrum
sensing in a centralized CR network which consists of a
FC and several CR users. Within the cognitive radio net-
work, each CR user sends its sensing data to the FC peri-
odically through common control channel. Then the FC
combines the sensing data from different CR users and
makes a decision on the presence or absence of the PU.
For simplicity, we assume that the sensing data are sent
from the CR user to the FC without any communication
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channel loss.

Here we consider a CR network with K CR users. Sup-
pose that N samples are utilized for energy detection at
each CR user. The spectrum sensing problem at the k-th
CR user can be modeled as a binary hypothesis test prob-
lem, which is given by

B w,(n) H,
o {hks<n> +w,(n) H,

where s(n) denotes the primary signal; w,(n) denotes
the additive white Gaussian noise (AWGN); and #, de-
notes the channel gain between the PU and the k-th CR
user. The channel gain is assumed to be constant during
each sensing period. H, and H, denote the hypotheses
corresponding to the absence and presence of the primary
signal, respectively.

Besides, we assume that s(n) is considered to be ran-
domly and independently achieved from complex PSK
constellations with unit power (i. e., ls(n) I =
Without loss of generality, we suppose that the noise
w,(n) at each sample is a circularly symmetric zero-mean
complex Gaussian random variable with unit-variance,
and the channel gain #, is zero-mean complex Gaussian
random variable. Thus, the instantaneous signal-to-noise
ratio (SNR) of the k-th CR user is y, = | &, |°. We as-
sume that FC has prior knowledge of the instantaneous
SNR, and this can be realized with direct feedback from
the CR users.

The energy detector measures the primary signal energy
within a specified duration. Each CR user calculates a
summary statistic ¥, over a detection interval of N sam-
ples, which is denoted as

1 N-1
= ﬁz \xk(n) ‘2
n=0

Then cooperation diversity of multiple CR users is carried
out in order to achieve better spectrum sensing perform-
ance.

We first consider local spectrum sensing at the individ-
ual CR user. The test statistic of the k-th CR user using
energy detection is given by Eq. (2). For simplicity, as-
suming that N is large enough, local test statistic Y, ap-
proximates the Gaussian distribution according to the cen-
tral limit theorem,

(2)

i.e.,

1
Y 7 (l’ﬁ) . (3)
KTy 1+2

A (1 Y Nyk) H,

where ./ (u, o) denotes the Gaussian distribution with
the mean value x and variance o.

We set A, as the local decision threshold for the k-th
CR user; the local false alarm probability P, and the de-
tection probability P, , can be defined as

P =Pr(Y, >, [H) =0((A, -DVN)  (4)

N
Py =Pr(Y, > A, [H) =0 (4, ~(1+7,) ﬁ)
k

(3)

where Q( +) denotes the complementary distribution func-
tion of the standard Gaussian. Based on the above defini-
tions in Eqgs. (4) and (5), the local missed probability
P, , can be defined as

P, =Pr(Y, <A | H)=1-P,, (6)

2 Soft Combination

Cooperation among CR users is usually cooperated by a
FC through two types of fusion rules:
sion rules and soft decision fusion rules. When hard deci-
sion fusion rules are used, CR users exchange only one
bit of information regarding whether their observed energy
value is above a certain threshold or not.

hard decision fu-

In this paper,
soft decision fusion rules are investigated in which accu-
rate energy values observed by different CR users are
combined to make a better decision. It is demonstrated
that soft combination schemes have significant perform-
ance improvement over conventional hard combination"*’.

For soft combination schemes, sensing data from dif-
ferent CR users is linearly combined with weight coeffi-
cients and decisions based on the weighted summation.
To allow multiple CR users to collaborate, we transmit
the test statistic { Y, } directly to the FC through the com-
mon control channel. Once the FC receives | Y, |, the

global test statistic y, is linearly calculated as"®’

K
Ye = ; w Y,

where w, denotes the weight coefficient corresponding to
the k-th CR user. The combining weight for the particular
user represents its contribution to the global decision. For
if a CR generates a high SNR signal which may
it should be as-
signed by a larger weight coefficient. For those CR users

(7)

example ,
lead to a correct detection on its own,

which experience deep fading or shadowing, their weights
should be decreased in order to reduce their negative con-
tribution to the FC.

Assuming that {Y,} and {w,| are independent for dif-
then, according to Eq. (7), y, is under the
Gaussian distribution. Then the global test statistic has
means and variances which are given by

ferent k,

wo = E[y. |Hy] = zwk
k:l] .
ot = varly, |H,] = L3
o (8)
w = E[y [H] = zwk<l +9,)
, 1 <
o, = var[y, |H ﬁz wi (1 +2y,)
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where E[ + ] and var[ « ] denote the statistical expectation
and variance, respectively.

The global test statistic is compared with a global deci-
sion threshold A in order to make a global detection re-
sult. If y. > A, the FC decides hypothesis H, is true; oth-
erwise, the frequency band of interest is assumed not to
be used by the PU, so the FC decides hypothesis H, is
true.

K
Generally, we set 2 w, = 1. Then, according to Eq.
k=1

(8), the global probabilities of the false alarm and detec-
tion are given by

szQ(/\—,uo)zQ<A—1

g, K

5w

k=1

«W> (9)

A-(+m7n)

N zk,wi(l +2vy,)

K
where n = z w.y, - The global missed detection proba-
k=1

W) (10)

bility is given by

0.=1-0,=1-o(* =)

1

3 Optimal Decision Threshold Analysis

The essential problem of energy detector design is to
determine the decision threshold in order to achieve ideal
detection performance. Suppose that we choose a lower
decision threshold, so that we will have a higher false
alarm probability. On the contrary, if we choose a higher
decision threshold, a larger missed detection probability
will be achieved. Therefore, there exists a fundamental
tradeoff between the probability of false alarm and the
probability of missed detection.

Considering the tradeoff between the two error proba-
bility, we can know that minimizing the total error proba-
bility of spectrum sensing is significant for achieving the
better performance of CR systems. For a given frequency
band of interest, we define P(H,) as the probability for
which the primary user is present, and P ( H,) as the
probability for which the primary user is absent. Obvious-
ly, we can obtain P(H,) + P(H,) =1. The total error
probability P, is defined as

P, =aQ, +B0,,

where « = P(H,) and 8 =P(H,). We assume that the
prior probability « is known for all the CR users based on
long-term spectrum measurement. By minimizing the to-
tal error probability criterion, Q; and Q, are weighted and
simplified as a measurement of the total error probability.
For a special case in which @ =g, the total error probabil-

(12)

ity is calculated as

P.=2(0,+0,) (13)

Substituting Q; in Eq. (9) and Q,, in Eq. (11) into
Eq. (12), the total error probability is given by

)+8(1-0(*=, ) v

1

P.=aQ ( A1
0

Therefore, our core goal is to determine the optimal
decision threshold which can minimize the total error
probability.

Proposition 1  If the decision threshold A € (1,1 +
n), then both the false alarm probability Q; and the
missed detection probability Q  are less than 0. 5. Fur-
thermore, let N approach infinity, the false alarm probabil-
ity Q;,—0, and the missed detection probability O —0.

Proof If the decision threshold A € (1,1 +7), then

A—-(1+n)

ALy :
A/ Zwi A/ zwi(l +2'}’k)

From Egs. (9) and (10), according to the monotonicity
of the Q function, the detector performance can be de-
rived as

>0, VN <0

(15)

o Q()‘K"1 \W><Q(0) =0.5 (16)
> Wi
Q, Q( );"““7) /N)>Q<o> = 0.5
ZWi(l +2v,)
(17)
Therefore, we can also have
0,.=1-0,<0.5 (18)

Furthermore, when N approaches infinity, we can obtain

A-(1+mn)

K

> wi(l +2y,)
k=1

IN =

(19)

Thus, we can also see that Q,—0, and O ,—0 when N
approaches infinity.

In the field of spectrum sensing, a detection probability
of 90% and a false alarm probability of 10% are regarded
as the target requirements for all the sensing algorithms ™' .
From Proposition 1, it follows that the constraints Q, >0.5
and Q,, <0.5 are equivalent to 1 <A <1 +.

Proposition 2 The total error probability P, is a con-
vex function of the decision threshold A, when 1 <A <1
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+7.
Proof According to Eq. (14), differentiating P, with
respect to A gives

aPe 634
= - exp(
0A V2ma,
B cxp(_(/\—(1+n>)2
V2o, 20—?

Then, the second-order derivative of P, with respect to A
is given by

_(/\—1)2)+

2
20,

) (20)

PP, a(r-1) (
2 = exp( —
oA 2wo,
B(A-(1+n)) (
V2 0'1
Ifl<A<l+m, wecansee that A —1 >0, and A — (1 +

1) <0. Then the second-order derivative of P, is greater
than 0, that is

(/\—1>2)+

2
20,

_(/\—(1+n))2)

20'? (21)

a’P
> >0
oA

(22)

Thus, the total error probability P, is convex in A when 1
<A<l +nm.
From Proposition 2, we can see that the optimal thresh-

old value is unique if it exists. Setting the first derivative

a
as a =0, we can obtain the expression of the optimal

threshold as

« exp( (A —21)2): B exp( —()‘_(ljﬂ))z
«/277r0'0 20, /ZTTO'I 20,
(23)

Solving A by Eq.(23),
is taken to be the largest root.

the optimal decision threshold
Hence, the optimal deci-

sion threshold can be determined by

1
[ oKy — 0'0/-L1+0'00'1X
Ino Ino, ]
2 —
Ny = \/(Ml —10) +2( 0 0)(lnﬁ 1H<To)
o, 70,
1 Ina - InB
7(M0+M1)+ < 0'3 0y =0,
T )
(24)

where y, =1,
old for soft decision cooperative spectrum sensing is ob-
tained. From Egs. (8) and (24), we can see that the op-
timal threshold is a function of the weight coefficients
{w,|, the number of samples N, and the prior probabili-
ty . In the low SNR region, the variances of the global
test statistic o, ~o-;. If we assume that the prior probabil-
ity a =3, the optimal decision threshold can be simplified

and u, =1 + 7. So far, the optimal thresh-

as
R
A =75 =5 (25)

4 Simulation Results

In this section, simulation results are given to illustrate
the impact of system parameters on the optimal threshold
value for soft decision cooperative spectrum sensing. Un-
der the Rayleigh fading environment, it is reasonable to
assume that we have independent and identically distribu-
ted (i.i. d.) Rayleigh fading with the instantaneous
SNRS 71 ’72 ’.‘.
random variables with the mean y (i. e., the average
SNR).
zations for the given constant channel gains.

First, we present the optimal decision threshold for dif-
ferent average SNRs when the equal gain combining
(EGC) , the maximal ratio combining (MRC) , and the
modified deflection coefficient ( MDC ) schemes'® are
adopted. The weight coefficients of the three soft combi-

nation schemes can be given as

,Yx being i.1i. d. exponentially distributed

The simulation results are obtained from 10* reali-

1
Wiges =g 1 <ks<K (26)
Yk
Warer = & l<sk<K (27)
27/
j=1
/(1 +2
Wapey = i U +2y,) I <k<K (28)
v/ (1 +2y)
j=1

Here, we consider a system scenario with the number
of CR users K =4, the number of samples N =100, and
the prior probability o =0.5. Fig. 1 describes the optimal
decision threshold vs. the average SNR vy for three differ-
ent soft combination schemes according to Egs. (26),
(27) and (28). Fig. 1 shows that the optimal decision
threshold is between 1 (lower bound) and 1 +y (upper
bound). It can be also seen that the MRC and MDC
schemes have almost the same optimal decision threshold
in the low SNR region. Within the high SNR region, the
optimal decision threshold for the MRC scheme is greater
than that of the MDC scheme. Furthermore,
SNR region, the average SNR y =~ and then the optimal
decision threshold for the EGC scheme A, =1 +vy/2. In
addition, Fig.2 depicts the minimum the total error prob-
ability for the corresponding three different soft combina-
tion schemes in Fig. 1. From Fig.2, we can see that both
the MRC and MDC schemes have nearly the same per-

in the low

formance which outperforms that of the EGC scheme.
Secondly, we consider the impact of the prior probabil-

ity « on the detector design of the optimal decision thresh-

old. Here, we consider K =4, N =100, and the average
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Fig.1 Optimal decision threshold vs. average SNR with three
different soft combination schemes (K =4, N =100, and « =
0.5)
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Fig.2 Minimum total error probability vs. average SNR with
three different soft combination schemes (K =4, N =100, and
a=0.5)

SNR y = -6 dB and —10 dB. Fig.3 illustrates the rela-
tionship between the optimal decision threshold value and
the prior probability «. It can be seen from Fig. 3 that the
optimal decision threshold increases with the increase in
the prior probability «, which means that the activity of
the PU has effects on the design of the detector, which is

1.25¢ Average SNR =6 dB

1.20

1.15]

1.10

Optimal decision threshold

1.00 o EGC
0,95 ~ Average SNR=10 dB —=— MRC
—o— MDC

I I I I I I I J
0'900.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prior probability o

Fig.3 Optimal decision threshold vs. prior probability with
three different soft combination schemes (K =4, N =100, and
the average SNR = -6, -10 dB)

reasonable. Since the PU is seldom present (i.e., the
prior probability « is large) , the optimal decision thresh-
old value should be increased in order to obtain the target
minimum the total error probability.

Thirdly, we consider the influence of the number of
samples on the optimal decision threshold. We choose K
=4, «=0.5, and the average SNR y = -6, —-10 dB.
Fig. 4 describes the optimal decision threshold vs. the
number of samples for three different soft combination
schemes. It is verified that the number of samples has al-
most no influence on the optimal decision threshold. It
can also be proved that the optimal threshold of the MRC
scheme is greater than that of the MDC scheme. Further-
more, the MRC and MDC schemes have almost the same
optimal decision threshold value with the average SNR vy

= -10 dB.
1.251 —o—EGC; —5-MRC: ——MDC
Average SNR =6 dB
2 1.20f VA
—e—a—a a8\ —8—0f
<= [] [l
g F———— f ot o o o
g B!
= 1.15f .
2 [
8 \ /
S 1100 7\ 7 -
g e { o
E HA ]
= {1
S 1.0 ol — 5
Average SNR =10 dB
100 1 1 1 1 1 1 1 J

1
100 200 300 400 500 600 700 800 900 1 000
Number of samples

Fig.4 Optimal decision threshold versus number of samples
with three different soft combination schemes with K =4, o =
0.5, and the average SNR = -6 dB, -10 dB

Finally, we analyze the impact of the number of CR
users on the optimal decision threshold. Here we set N =
100, « =0.5, and the average SNR y = -6, -10 dB.
Fig. 5 plots the optimal decision threshold vs. the number
of CR users for three different soft combination schemes.
As the number of the CR user increases, the EGC scheme

—e—EGC; —8—MRC;: ——MDC

1.25F Average SNR =6 dB

N
=

S, %

Optimal decision threshold
&

1.10F P ]
]
q o/
1.05 &/
Average SNR =10 dB
1‘ 00 1 1 1 1 1 1 1 1 ]

1 2 3 4 5 6 7 8 9 10
Number of CR users
Fig. 5
with three different soft combination schemes (N =100, « =
0.5, and the average SNR = -6, -10 dB)

Optimal decision threshold vs. number of CR users
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has almost the same optimal decision threshold, showing
that the number of CR users has a weak influence on the
optimal decision threshold for the EGC scheme. Howev-
er, the optimal decision threshold values of MRC and
MDC schemes increase as the number of the CR users in-
creases, and the optimal decision thresholds for the two
soft combination schemes approach a corresponding indi-
vidual limit value while the number of CR users increa-
ses.

5 Conclusion

In this paper, a closed-form expression of the optimal
decision threshold is derived under the soft decision coop-
erative spectrum sensing scheme, including several pa-
rameters such as the weight coefficients, the prior proba-
bility of absence of the PU, the number of samples and
the number of CR users. The impacts of these parameters
on the optimal decision threshold are verified by detailed
simulation results. It is demonstrated that the average
SNR of soft combination schemes has a great effect on the
value of the optimal decision threshold, whereas the num-
ber of samples has a weak influence on the value of the
optimal threshold.
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