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Abstract: A novel hashing method based on multiple
heterogeneous features is proposed to improve the accuracy of
the image retrieval system. First, it leverages the imbalanced
distribution of the similar and dissimilar samples in the feature
space to boost the performance of each weak classifier in the
asymmetric boosting framework. Then, the weak classifier
based on a novel linear discriminate analysis (LDA) algorithm
which is learned from the subspace of heterogeneous features is
integrated into the framework. Finally, the proposed method
deals with each bit of the code sequentially, which utilizes the
samples misclassified in each round in order to learn compact
and balanced code. The heterogeneous information from
different modalities can be effectively complementary to each
The
experimental results based on the two public benchmarks

other, which leads to much higher performance.
demonstrate that this method is superior to many of the state-
of-the-art methods. In conclusion, the performance of the
retrieval system can be improved with the help of multiple
heterogeneous features and the compact hash codes which can
be learned by the imbalanced learning method.
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n the last few years, the problem of learning similari-
Ity—preserving binary codes for large-scale image re-
trieval has received much attention in the vision commu-
nity. Learning compact binary code from high dimension-
al features can enable significant gains in computational
speed and storage cost. The scheme of learning binary
codes should have the following properties such as low
storage cost, high similarity preserving and computational
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efficiency. The above constraints need to be satisfied sim-
ultaneously, which makes the hashing code learning very
challenging.

For the image retrieval problem, it is quite intuitive to
use linear search methods, but it is computationally for-
bidden for large scale datasets. This limitation induces the
development of various approximate nearest neighbor
(ANN) algorithms. The popular ANN approaches can be
divided into two categories, tree-based methods and has-
hing-based methods. In the former category, there are
numerous algorithms such as KD-tree!"!, metric tree™
and so on. It is shown that these methods perform very
well in relatively low dimensional data, and the computa-
tional complexity will deteriorate into linear time when
the dimension of data is increased. The latter is the most
popular method due to the merit of significant reduction
in storage and sub-linear search time. But the key issue of
hashing-based image retrieval methods is how to design a
compact code maintaining high precision and recall rate.

In this paper, we focus on the hashing-based methods
and our goal is to learn discriminative binary code in the
supervised learning framework. Locality-sensitive hashing
(LSH) "™ is the most popular hashing method, which is
also a data-independent method. The LSH method needs
a relatively long code to obtain high recall rate. One solu-
tion to this problem is to use multiple tables which encode
short codes to achieve high performance, but it also in-
creases the computational burden and storage overhead.
Another method to deal with this problem is to use multi-
probe LSH', which maps similar samples into multiple
buckets intelligently. Recently, the LSH has been extend-
ed to accommodate kernel similarity'”’, which implicitly
models the mapping from original space to hamming
space by utilizing the kernel trick to compute the similari-
ty between two samples.

In contrast to the above described data-independent
hash schemes, recent research aims at data-dependent
hashing in order to learn a compact set of discriminative
hash codes. ITQ ''produces the quantization of hash
codes in a geometric view and minimizes the quantization
error by finding an orthogonally rotation matrix after ob-
taining the PCA coefficients. Spectral hashing ( SH)""
seeks compact binary code to preserve the affinity among
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data points both in hamming space and original space.
Shift-invariant kernels hashing ( SIKH) Bl uses the shift-in-
variant kernels to represent the relationship of hamming
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distance between two points. Semantic hashing
use of restricted Boltzmann machine which has similar
functionality to neural networks to learn compact code.
Binary reconstruction embedding( BRE)"” constructs bi-
nary code by minimizing the difference between the origi-
nal metric and hamming distance, and uses the coordi-
nate-descent algorithm to solve the optimization problem.
Minimal loss hashing( MLH) "''formulates the problem
based on the structured learning framework and solves it
with a perception-like algorithm to obtain the optimized
binary code. Semi-supervised hashing( SSH) "' learns the
code by minimizing the empirical error with an informa-
tion theoretic regularizer over the labeled set which is
solved with a common gradient descent algorithm. An-
chor graph hashing( AGH) """ learns the compact code by
utilizing the graph-based hashing method which automati-
cally discovers the neighborhood structure in the original
space. LDAHash'"" intends to find a mapping to mini-
mize the expectation of hamming distance in a positive
pair set and maximize the hamming distance in a negative
pair set.

The above mentioned methods gain great progress in
learning compact and discriminative code, but still face
many problems which are very difficult to tackle with. In
this paper, we propose a novel hashing method based on
the asymmetric boosting framework, which considers the
imbalanced distribution of both similar and dissimilar
samples in the feature space. Our method learns each
coding bit step by step, which takes into account the dis-
tribution information between similar and dissimilar pairs.

1 Related Work
1.1 Locality-sensitive hashing

The key idea of LSH'' is mapping similar data points
to the same bucket with high probability. We denote
h(x) as the hashing function from the LSH family. It has
the following locality preserving property:

P{h(x) =h(y)} =sim(x, y) (1)

where h(x) = sign( w'x +b); wis a random vector from
a p-stable distribution and b is a random intercept; sim(x,
y) =exp( || x -y ||*/0’); o is the standard deviation of
the Gaussian function.

Suppose that we learn a K-bit binary code denoted by
H(x) =[h/(x), hy(x),....,h(x)], and give [ hash ta-

[16]

bles. Then the collision probability’ ™ of two points is

calculated as
P(H(x) =H(y))ocl[l—w] @

There is a tradeoff between parameters / and K. Large

K will decrease the collision probability, which reduces
false collisions and also affect the similar samples. Large
[ can reduce this effect, but it will increase the computa-
tional complexity.

1.2 Boost similarity sensitive coding ( BoostSSC)

BoostSSC'” is aimed to learn an embedding from the
original space to the hamming space. Given that a sample
x is represented by a binary code with M bits y, =
[A,(x), h,(x), ..., h,(x)], the distance between two
samples x; and x; is given by a weighted hamming dis-

M
tance D(x,, x,) = Y a, | h,(x)) —h,(x) | . The weight
n=1

«, and hamming function 4, are learned in the boosting
framework. Each weak classifier f, which minimizes the

n

square loss in the training set is learned in each iteration.
K

Sy =argmin(C Y wi(z, ~£,(x], 1)) (3)
k=1

where z, is the neighborhood label and w' is the weight
for sample k in the n-th iteration.

k

w, = exp( - ifr(x:k’ x!k)) 4

where f,(x,, x,) =a,[(e/x,>T,) =(e/x;>T)] +8,; «,
and B, are the coefficients; e, is the unit vector with only
the #-th component equal to 1.

We can see that the each weak classifier only considers
a single dimension of the feature to encode signature
which is less informative. Our proposed method makes
use of a subspace of multiple features to represent each bit
and it will be discussed in section 2 in detail.

2 Discriminative Binary Code Learning
2.1 Semi-supervised hashing based on LDA

Traditional hash coding methods focus on learning in
an unsupervised way, but using label information can ac-
tually boost the retrieval performance in a large margin.
In this section, we will introduce a semi-supervised has-
hing algorithm which intends to minimize the hamming
distance in the same class, and maximize the hamming
distance in different classes. Given a set of samples y =
{x,}),, where x, e R, the purpose of hashing is to find
a set of hash function A: Rd—>{0, I}L, where each one
generates a single hash bit. The objective function is as
follows:

mineE{ |y -y’ [*[S}-E{|y-y' | |D} (5)

where S and D represent the same sample set and the het-
erogeneous sample set, respectively; E{ - }is the expec-
tation with respect to the set S or set D; y = sign(Px),
and P is the projection matrix needed to be learned; « is a
scalar parameter. Then Eq. (5) can be converted to

minaE{ | Px -Px' |> | S} —E{ | Px -Px' |* | D} (6)
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We can see from Eq. (6) that
E{|Px -Px'|*|S} = Tr{P3P"}
3 = E{(x —x)(x -x")" | 8} (7

Eq. (7) can be reformulated into our final objective func-
tion as

L = Tr{P3,P"} (8)
where 3, = 33" .

semi-definite matrix, it can be solved with eigen decom-
position ¥, = UAU" .
the m smallest eigenvectors of matrix 3/, , i.e.,

P=02p,)"” (9

The LDA criterion has a good generalizing ability, the
effectiveness of which is theoretically proved and also ex-
perimentally verified''". Fig. 1 shows the projection from
original 2D space to 1D line. We can see that the data of
different classes can be well separated by choosing an ap-
propriate direction of projection.

Since X, is a symmetric positive

The matrix P can be obtained by

Fig.1 Binary coding with LDA criterion

2.2 Learning based on asymmetric boosting

In the training stage, the positive samples are pairs of
images x, and x;, where x, is one of the N nearest neigh-
bors of x;, x, e N(x,). Negative samples are pairs of im-
ages that are not neighbors. We utilize the asymmetric
gentle AdaBoost algorithm for training, and the weak
classifier is implemented with a lookup table( LUT) algo-
rithm which is different from the BoostSCC method'"”.
Each weak classifier encodes multiple bits instead of a
single bit, which is different from the previous methods.

Feature subset

Image set Feature pool
N§E! gé;i Gist feature Samoli
EECEE T X% Bow featre | XMPINE
Eﬂ%ﬂlﬂﬁi ‘Wavelet texture d dim
‘Ea.l Color moment
waiEl '
d dim

d dim |Optimized|

projection
wl i =

At each iteration n, we select a weak classifier f, which
minimizes the loss in the training set, and the objective
function is shown in Eq. (5). But the weight w" for sam-
ple k in the n-th iteration is formulated as
n-l1
wh = exp ( -7,C. Y fi(x], x}) ) (10)
t=1
where C, is an asymmetric factor which has a large penal-

ty for misclassified similar pairs. The LUT based on weak
classifiers is

f(x,x) =LUT[ [w'F(x) -w'F(x) |1 (11)

where the LUT function returns a binary code, which is
corresponding to the learned projection w. The LUT is
constructed similarly to Ref. [ 18], which divides the pro-
jected feature space into multiple sub-regions and encodes
each region with different signatures. The advantage of
using the LUT method is that it can model more complex

data distribution"”’.

2.3 Fusing multiple heterogeneous features

The framework of our proposed method is shown in
Fig.2. Given a set of training images, we first extract the
feature vector, and denote it as R”. Then we utilize ran-
dom sampling to select a lower dimensional set RY,
where d<<D. After sampling, all the data are mapped in-
to a lower dimensional space. The optimal projection vec-
tor can be learned in a semi-supervised manner which is
based on LDA criterion. Each projection can generate one
bit for hashing code. We use the boosting algorithm to
learn each bit sequentially, which considers the samples’
distribution and focuses on the misclassified samples in
each round. The motivation of this paper is to utilize het-
erogeneous features to capture the color, texture, spatial
information, etc. In this paper, we use the Gist feature,
BoW(bag of words) feature, wavelet texture and color
moment to capture the discriminative information among
different classes which are complementary to each other.

Asymmetric boosting

Result code

=D [hy (x),hy (x), ++ hy (%) ]

Fig.2 Binary code learning

After obtaining the projection matrix P, the hash code
is calculated by formula y = sign(Px). So the computa-
tional complexity in the query stage is O(Md), where M
is the length of the code and d is the dimension of the

sub-feature vector.
3 Image Retrieval Procedure

We build an image retrieval system based on the meth-
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od described in section 2, which is shown in Fig.3. Our
system consists of two stages, training and testing. The

1) Feature
extraction

—>

Training stage

-ﬂﬂﬁfl

3) Projection matrix

training stage can be learned offline and the testing stage

runs online.
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Fig.3

In the training stage all the training data extract features
from original images (step 1) and learn a set of LDA-
based projections (step 2) in order to generate a set of bi-
nary codes. All the projection parameters can be represen-
ted with a projection matrix (step 3). The mapping of
feature space to hamming space can preserve the semantic
similarity between images, and similar pairs will have
similar hamming codes. In other words,
can be mapped into the hashing table buckets within a
small hamming distance. After obtaining the projection
matrix, the codes of the whole dataset can be calculated
(step 4). These codes are loaded into memory during the
testing stage.

In the testing stage, each query is converted into a fea-
ture vector (step 5) and the binary code is generated ( step
6) with the learned projection matrix. After obtaining the
binary code of a query image, we can look up the hash
table (step 7) and rank the results according to the ham-
ming distance among query codes and dataset codes.
There is a threshold R (step 8) which controls the number
of returned results. In this manner, we can obtain the re-
sults of query in sub-linear time.

similar images

4 Experimental Results and Analysis

We evaluate our proposed method on CIFAR-10 dataset
and LabelMe22K dataset, which are public in the inter-
net. We compare our method with many state-of-the-art
algorithms such as spectral hashing (SH), binary recon-
struction embedding ( BRE), locality-sensitive hashing
(LSH), and iterative quantization (ITQ).

4.1 Dataset

The CIFAR-10 dataset is a labeled subset of an 80 mil-
lion tiny image collection. It consists of 6 x 10* color im-
ages with 32 x 32 resolutions and is categorized into 10
classes. Each class contains 6 000 samples and each sam-

Image retrieval procedures

ple has a class label. Some example images from the CI-
FAR-10 dataset are shown in Fig. 4 (a). The La-
belMe22K dataset consists of 22 019 images, and they are
divided into 20 019 training images and 2 000 test ima-
ges. Each image extracts the 512D Gist feature, the 300D
BoW feature, the 128D wavelet texture and the 225D col-
or moment as features. Some of the example images from
the LabelMe22K dataset are shown in Fig. 4(b).

e i B o e
e i e e e
(b)
(a) CIFAR-10 dataset; (b) LabelMe22K

Fig.4 Sample images.

dataset

In the following experiment, we fix all the parameters.
We set d = 64 for the dimension of feature subset. The
asymmetric factors C, and C, of asymmetric gentle Ada-
Boost are set to be 1 and 0. 25, respectively. The 256-bin
LUT table is used for each weak classifier.
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4.2 Results on CIFAR-10 dataset

We evaluate the experimental results by the number of
bits vs. precision curve with hamming radius R<3. Fig.
5 shows the results in the CIFAR-10 dataset. We can see
from Fig. 5 that our proposed method is superior than
those of the LSH, SH, ITQ and SIKH methods. Our
method can obtain a precision of 0. 792 4 encoding with
only 32 bits which is 6% higher than that of the ITQ
method, 12% higher than that of the LSH method. We
also find that the SIKH method obtains quite low preci-
sion of approximately 6% . Both the ITQ and LSH meth-
ods have a very similar precision which is also superior to
that of the SH method. The precision-recall curve is dem-
onstrated in Fig. 6, which measures the precision with
specified recall rate. From Fig. 6, we can see that our
method also performs the best among all the methods.
Our method is comparable with the ITQ and SH methods
when the recall is greater than 0.6 and has a large margin
among all the others when the recall is below 0. 4.

1.0

0.9+

0.8r
i —e— LSH
0.6t —— SH
£ —&—ITQ
2 0.5+ —— SIKH
g —+— Ours
5 0.4r
3
& 0.3r

0.2

10 15 20 25 30 35 40 45 S50 55 60 65

Number of bits
Fig.5 Number of bits vs. precision curves ( CIFAR-10 data-
set)

Precision

0

0 0.1 0.2 0.3 0.4 0.5 0.60.7 0.80.9 1.0
Recall
Fig.6 Precision-recall curves( CIFAR-10 dataset)

Fig. 7 shows some results of a query of horse images
with the returned ranking of the top 30 images. The im-
age with the blue rectangle means false positive. We can

see that our method is very robust in searching class-cate-
gory images, but there are some false positive samples,
for example, dogs with standing pose are very similar to
those of horses.

)

ot il o I .
5 ol A =
(=4 oludloty 8 IR 43T

Fig.7 Sample retrieval results on CIFAR-10 dataset

We also observe that the contour information in this
dataset has a predominant effect on feature representation.
The false positives with similar shapes can be ranked with
high confidence. The color and texture information is not
so important in such low resolution datasets that these fea-
tures have no effect.

4.3 Results on LabelMe22K dataset

The number of bits vs. precision curves are shown in
Fig. 8. We can see that our method can obtain a perfect
precision of about 0. 997 with only 32 bits, which is quite
competitive with the other methods. The ITQ method is
also very good, with only a small margin(less than 3% )
to our methods. The SIKH method still performs the
worst. The experimental results are consistent with the re-
sults on the CIFAR-10 dataset. We also observe that our
method increases the performance with a nearly linear
speed which is faster than other methods. Fig. 9 shows
the precision-recall curves. We can see that our method is
superior to all of the other four methods with a large mar-
gin. It is worth mentioning that the precision of our meth-
od is 14% higher than that of the ITQ method when the
recall rate is equal to 0. 6. We also observe that the chan-
ging speed of the precision curves is much slower than

1.07
0.97
0.8f
20.7»
= 0.6f
® 0.5t
=
g 0.4} = Lol
B ——SH
e 0.3 _E_ITQ
—o— SIKH
0.2 —+— Qurs
0.1

15 20 25 30 35 40 45 50 55 60 65
Number of bits

T

Fig.8 Number of bits vs. precision curves( LabelMe22K
dataset)
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Precision

()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall
Fig.9 Precision-recall curves(LabelMe22K dataset)

those of the LSH, SH and SIKH methods. The ITQ
method also has a very similar changing speed compared
with ours.

Some query results are shown in Fig. 10 with a street
view outdoor scene. This scene contains a variety of com-
plex backgrounds such as buildings, cars, trees, etc. The
retrieval results are also very good when we see the top 30
ranking images. The images with the blue rectangle mean
false positives. We can see from Fig. 10 that the spatial
envelopes of images have a predominant effect on the fea-
ture due to the low resolution of the image sets. It also
suffers from the same problem as in the CIFAR-10 data-
set, and many informative features cannot play a role in
such a low resolution dataset. One resolution to this prob-
lem needs a moderate resolution image set. Furthermore,
the training time of our method is little shorter than those
of the other methods. In the testing stage, all the methods
have the same running time due to the same coding for-
mula.

i N
e - N

pelin TS el |
B i B e, T
- i =

Fig. 10 Sample retrieval results on LabelMe22K dataset

5 Conclusion

This paper shows that learning discriminative binary
code has an impact on class-category image retrieval in a
supervised learning framework. We use LDA criterion to
sequentially learn each bit with the asymmetric gentle
boosting algorithm. The compact code learned from our
method can obtain improved retrieval speed with reduced
storage cost. Experimental results on the CIFAR-10 and
LabelMe22K datasets demonstrate that our proposed

method is superior to many state-of-the-art algorithms
such as the ITQ, SH methods, etc.

Furthermore, there is still a lot of work to do in the fu-
ture, such as testing the method in different image resolu-
tions, and applying it in more complicated datasets with
more categories.
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