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Abstract: A two-level Bregmanized method with graph
regularized sparse coding ( TBGSC) is presented for image
interpolation. The outer-level Bregman iterative procedure
enforces the observation data constraints, while the inner-level
Bregmanized method devotes to dictionary updating and sparse
represention of small overlapping image patches. The
introduced constraint of graph regularized sparse coding can
capture local image features effectively, and consequently
enables accurate reconstruction from highly undersampled
partial data. Furthermore, modified sparse coding and simple
dictionary updating applied in the inner minimization make the
proposed algorithm converge within a relatively small number
of iterations.
proposed algorithm can effectively reconstruct images and it
outperforms the current state-of-the-art approaches in terms of

Experimental results demonstrate that the

visual comparisons and quantitative measures.
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mage interpolation is a fundamental and widely stud-

ied problem in image processing. It aims to recover a
plausible image from incomplete data (e. g., pixels sam-
pled at a subset region). Since this problem is ill-posed,
incorporating some prior knowledge into the recovery is
needed. The conventional image interpolation algorithms
mostly exploit the local correlation of image pixels. For

example, B-spline interpolation'"’

employed cubic splines
to fit the local intensity/regression function; and the ker-
nel regression (KR) framework used adaptive local covar-
iance structures to locally guide the linear or higher order
regression for interpolation'”. Zhang et al. ™! presented a
local coherent autoregressive ( AR) model, which as-

sumed that the underlying image is piecewise stationary.
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Motivated by recent progress in local intrinsic manifold
assumption, Liu et al. ' developed a graph-Laplacian
regularized local linear regression method ( RLLR),
which used the geometric structure of the marginal proba-
bility distribution as an additional local smoothness-pre-
serving constraint.

Some algorithms based on nonlocal and similarity pri-
ors have attracted much attention in the past few years.
the success of the patch-based nonlocal
method (PN) depends on iteratively projecting onto two
convex sets: one is given by the observation data and the
other is defined by the sparsity-based nonlocal prior
BM3D"'.
representation and nonlocal auto-regression model for in-
terpolation.

More recently, the combinations of local and nonlocal

For instance,

Dong et al. " combined the promising sparse

priors have received an increasing amount of interest.
Zheng et al. """ presented a graph regularized sparse cod-
ing ( GraphSC) algorithm, which introduces a k-nearest
neighbor graph into the sparse coding objective function
as a regularizer for image classification. In this paper, we
propose a two-level Bregmanized method with graph reg-
ularized sparse coding (TBGSC). The GraphSC prior is
incorporated into a two-level Bregmanized iterative proce-
dure to achieve better recovery ability and computation ef-
ficiency for image interpolation.

1 Preliminary

1.1 Bregman iterative method and augmented La-
grangian scheme

The augmented Lagrangian ( AL) method is a promis-
ing technique and used in various image recovery prob-
B Consider the following optimization problem
with linear equality constraint:

lems

minE(a) s.t. Aa=1 (1)

It can be solved by the standard AL method; i. e. the
solution of Eq. (1) is achieved by solving a sequence
of unconstrained subproblems, in which the objective
function is formed by adding the additional “penalty”
terms to the objective function of the original constrain-

ed optimization. The
constrained functions multiplied by a positive coeffi-

‘penalty” terms are made up of
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cient.

o' =arg min E(a) + (yﬁ,I—ACO +}2L [ I-Aa | 2}

y,li+l :ylli +M(1_Aak+l)
(2)

where y;' represents the vector of Lagrange multipliers and
w1 >0 is the penalty parameter. If we let y =y, /u, then
the iterative scheme (2) becomes the following alterna-
tive form.
k+1 . Mo T k 2
a  =argmin E(a) + I+y -Aa
gmin E(a) + 4 | T+y ||} 3

1 k+1

Yy +1=y" +Aa

Eq. (3) is often called the Bregman iterative method" """ .

The relationship of the AL method and the Bregman it-
erative method was discussed in Ref. [ 10 ]. They are i-
81 As explained
in Refs. [ 10 —11], the iterative procedure (3) has inter-
esting multi-scale interpretation.

dentical when the constraint is linear'

1.2 Graph regularized sparse coding

The effect of GraphSC lies on its manifold assumption.
It states that if two data points x,, x; are close in the in-
trinsic geometry of the data distribution, then their repre-
sentations s, and s, in the new dictionary are also close to
each other. Specially, a nearest neighbor graph G with M
vertices is introduced, where each vertex represents a data
point in X, and W is the weight matrix of G. If x, is
among the k-nearest neighbors of x;, W, =1; otherwise,
W, = 0. Besides, the degree of x, is defined as d,

M
= > W,and D = diag (d,,d,,-,d,), L =D - W.
j=1

Then a reasonable criterion for properly mapping the
weighted graph G to sparse coefficients S is to minimize

the following objective function'”’

i i (s, —sj)zWU = Tr(SLS™) (4)

1
2 i=1 j=1

In short, the objective function of GraphSC consists of
three terms: the empirical loss function, the Laplacian

regularizer, and the L1-based sparse penalty function:

A N
min - | X —BS || +aTr(SLS") + Z{ sl

5. t. 1B, °<!1 Vji=1,2,--,J (5)

2 TBGSC Algorithm

In this section, the TBGSC algorithm for image inter-
polation is derived. We use u to represent the image to be
reconstructed and f represents the observation data. These
two variables are related as F u = f, where F represents
the partially sampled encoding matrix. Undersampling oc-

curs when the number of samples is less than the number
of image entries.

2.1 Outer-level Bregman iterative method

When considering the GraphSC as a regularizer, image
recovery can be reformulated as follows:

. A
min{min 5 || Bs, ~Ru |3 +aTe(SLS) + 3 |5, |,

s. t. Fu-f=0 (6)

By applying the Bregman iteration, the solution of Eq.

(6) can be obtained by iteratively solving an uncon-

strained problem and then modifying the value of f used
in the next iteration. It yields

K+l . . T
u! = arg min { min (oTr(SLS") + 3 5, ], +

A 2
S IBs, —Ru |} )+ 5 Fu-f )]

fk+l =jk +f_Fpuk+]
(7)

A merit of the Bregman iteration is that the residual
I Fpu’”l —f |, of the sequence generated by Eq. (7)
converges to zeros monotonically.

2.2 Inner-level Bregman iterative method

Denoting X = Ru and employing operator splitting to
the subproblem in Eq. (7), the unconstrained minimiza-
tion problem is transformed to an equivalent constrained
problem ;

A ul
min o~ | X ~Z ¢ +aTr(SLS") + X |Is, Il

s. t. Z =BS
5, °<1  Vj=1,2,-,J

(8)

The augmented Lagrangian function of problem (8) is

L(B.S,Z,Y) =2 | X -Z|} +aTr(SLS") +

2

i ||s[||1+J§—‘BS—Z—; (9)

F

Since it is difficult to directly find the saddle point of
the augmented Lagrangian function L(B,S,Z,Y), the
alternating direction method is used to solve the following
sub-problems individually and alternatively.

2.2.1 S- and Z-subproblems

First, the minimization of Eq. (9) with respect to Z
can be analytically computed and Z can be eliminated.
Specially, from the first and the forth terms of Eq. (9),
we obtain the optimal solution ;

_AX+B(B'S-Y'/B)
B A+B

V/

(10)
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Moreover, it follows that

B'S“ 4 :/\B(X_Bksk” +Yk/ﬁ)

Yk+l :Y}: +B( _ Zk+l)

A+B
(11)

Secondly, substituting Z of Eq. (10) into Eq. (9), it
yields

Yk2

S = arg min S—=F—~ B‘S - X 4 +

F

ol

aTr(SLS™) + Z s, |l . (12)
i=1
Note that when updating s, the other vectors {s, |,
are fixed. Thus, after some mathematical manipulation,
we obtain the optimization problem for each s, :

k|2
sf” = argmm;L’ -x. PAR
2(A +8) i .
aL;s's, +sih, + |'s, || (13)
where h, =2« ;Liisj.
J#i
k|2
y.
Letting g(s;) ——LHBks‘—x‘—’ +aL,s; s,
&8 2+ |75 5T gL

T _ A8 KNT ( koo _
+s, h,, we have Vg(s[)—A+B(B) B's, - x,

k

y—‘) +2aL,;s, + h,. Then following the iterative shrink-

B
age/thresholding algorithm (ISTA) """ | it yields

D s )=

s' =arg mln{'y s, - [s?’ -

i

v m QaLuslln h + (H( )Ty A
agnindy s, [ + ) I, s I}
_2 L hm B T m
shrink (s',." oLs; +(B) Y ,L)
2y 2y
(14)
where y = [ﬁ%]eig( (B*)'B*) +aL,.

2.2.2 B-subproblem
We can obtain the rule of updating gradient descent by
taking the derivative of Eq. (9) with respect to B:

:Bk_é,[ _Y +ﬁ(BkSk+l _Zk+])](sk+l>T:
Bk+§Yk+](Sk+])T (15>

Bk+l

A normalization of dictionary columns is required after
the gradient descent.
2.2.3 u-subproblem

In order to achieve faster convergence speed, the varia-
ble u is updated at each inner iteration of the Bregman it-
erative process, which yields

' =arg min{% | Ru =2 |G+ E | Fu—f | §}
(16)

The least squares solution satisfies the normal equation,

[/,,LF:FP-F)\ZRTRI k+1 _/.Lka"l'/\zRT k+]

(17)
and yields
S, (k, ,k,) (k.,k) ¢
u kr’ y/ = k ) /\S k )
ook 2| llheck) S, (60) -y g
Mm+ oA
(18)

where 2 R'R, = 0l;S, z R} z\"'; 0 represents the

subset of data that has been sampled.

In summary, the proposed Bregmanized method con-
sists of a two-level nested loop. The outer loop updates
the variable f*', while the inner loop alternatively up-
dates the variables B, S, Z, and u.

3 Experimental Results

The performance of the TBGSC algorithm is evaluated
on several experiments. Its setup is similar to that in Ref.
[5], i.e. randomly keeping r pixels in the original im-
age and discarding others. The quality of the reconstruc-
tion is quantified using the peak signal-to-noise ratio

255

RMSE)'
Here RMSE is the estimated root mean error between the
ground truth and the recovered image. In the first experi-
ment, the comparison was conducted on four images:
two edge-dominated and two texture-abundant. Tab. 1
lists the PSNR results of KR, PN and TBGSC methods
under different sampling ratios.
proposed TBGSC outperforms all the other methods. In
particular, the TBGSC significantly outperforms PN on
images with regular texture pattern ( e. g., image
“Barb2” ). This may be because dictionary learning pre-
fers images with highly self-repeating features ( as veri-
fied in Ref. [12]).

Figs. 1 and 2 show that the TBGSC produces the most
visually pleasant results especially for those images with
complex texture,

(PSNR), which is defined as PSNR = 20lg(

It can be seen that the

indicating better recovery ability under

Tab.1 PSNR results of three methods under different
sampling ratios

/% Methods Lena Book Barb2 Barb
KR 31.55 31.21 24. 64 18. 54

25 PN 35.45 36. 54 29.94 28.26
TBGSC 35.84 36.69 30. 68 28.29

KR 29. 46 23.76 23.57 17. 86

15 PN 31.36 31.32 26. 06 17. 68
TBGSC 32.10 31.93 28.05 27.01

KR 22.27 27.52 22.54 16. 61

10 PN 29.32 29.26 23.68 16. 45

TBGSC 29. 85 29.97 25. 14 25.34
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higher undersampling ratios. The iterative property of the
proposed TBGSC for recovering image “barb2” with r of
15% is illustrated in Figs. 3 and 4. Fig. 3 displays the
PSNR value vs. iterations, where the Bregman iteration-
based dictionary learning approach demonstrates a notable
ability to increase the PSNR value quickly. Fig.4 depicts
the sequence of intermediate recovered image and corresp-
onding dictionaries at the 2nd, Sth, 8th, 15th iterations.
It can be observed that from the first to the fifth iterations

(a) (b) (¢) (d) (e)
Fig.1 Subjective comparison on four toy-example images with

r of 15% . (a) Reference image; (b) Observation; (c) KR; (d)
PN; (e) TBGSC

(a) (b) (¢) (d)
Fig.2 Subjective comparison on two toy-example images with

r of 10% . (a) Reference image; (b) Observation; (c) KR; (d)
PN; (e) TBGSC

291
—oe— TBGSC

281 —v— PN

(3]
~

PSNR value
BB R

N
)

N
N

1 1 1 1 J
0 20 40 60 80 100 120 140
Iteration

”

Fig.3 PSNR value vs. iteration for recovering image “Barb2
by PN and TBGSC with r of 15%

() (d)

Fig.4 Intermediate recovered images ( top line) and the corre-

sponding dictionaries ( bottom line) generated by TBGSC after
iterations with r of 15% . (a) After 2nd iteration; (b) After 5th it-
eration; (c) After 8th iteration; (d) After 15th iteration

most of the edge objective atoms are constructed and fur-
thermore from the eighth to fifteenth iterations more and
more details are added to the atoms. Additionally, the
average computation time per iteration is about 4. 19 s.
Here, our method was implemented in Matlab 7. 10. 0 on
a PC equipped with AMD 2.31 GHz CPU and 3 GB
RAM.

In Fig.5, the comparison on two generic images
“house” and “Lena” is conducted, where r = 15% is
maintained. The recovery PSNR of KR, PN and TBGSC
for “house” are 29. 39, 30. 96 and 31. 75 dB, and for
“Lena” are 26. 08, 26. 45 and 27. 13 dB, respective-
ly. Fig.5 shows the enlargements of the reconstruction

(a) (b) ) (d)
Fig.5 Subjective comparison on images “house” and “Lena”
with r of 15% . (a) Reference image; (b) KR; (¢) PN; (d) TBG-
SC
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results. Since the proposed method utilizes both the local
and nonlocal priors, the image local structure can be bet-
ter recovered by the TBGSC as observed in Fig. 5. Be-
sides, although PN also aims to exploit the non-local re-
dundancies existing in the image, it may fail and generate
some artifacts. It is probably because not many nonlocal
redundancies around those structures can be recognized
when the observations are highly undersampled. In con-
trast, our method can overcome this shortcoming by po-
sing the local constraint on the coefficients.

4 Conclusion

In this paper, we propose a two-level Bregmanized
method with graph regularized sparse coding for image in-
terpolation. The nonlocal and local geometrical structure
information, exploited by graph regularized sparse cod-
ing, is incorporated into the two-level Bregmen iterative
procedure. Experimental results show that the proposed
algorithm outperforms existing algorithms both in terms of
vision and PSNR, particularly under highly undersampled
observation.
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