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Abstract: The exponential stabilization problem for finite
dimensional switched systems is extended to the infinite
dimensional distributed parameter systems in the Hilbert
space. Based on the semigroup theory, by applying the
Lyapunov method, the
stabilization conditions are derived. These conditions are given
in the form of linear operator inequalities where the decision
while the
stabilization properties depend on the switching rule. Being
applied to the two-dimensional heat switched propagation

multiple function exponential

variables are operators in the Hilbert space;

equations with the Dirichlet boundary conditions, these linear
operator inequalities are transformed into standard linear
matrix inequalities. Finally, two examples are given to
illustrate the effectiveness of the proposed results.
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uring the last decade, the study of switched systems

has attracted considerable attention due to its signif-
icance in both theoretical research and practical applica-
tions'"”. A switched system is a dynamical system de-
scribed by a family of continuous-time subsystems and a
rule that governs the switching between them. In many
real cases, switched systems can be described by partial
differential equations (PDE) or a combination of ordinary
differential equations (ODE) and PDE, such as in chemi-
cal industry processes and biomedical engineering. We
refer to these switched systems as distributed parameter
(DPSS) or
. The results of infinite dimensional

switched infinite dimensional
switched systems
dynamical switched systems are usually not straightfor-

ward, and they frequently require further analysis. Based

systems
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on the fact that switched systems described by the PDE
are more common in general, there is a realistic need to
discuss such systems.

Analysis of switching sequences is a main research top-
ic in the field of switched systems, and it plays an impor-
tant role in the study of problems such as stability analysis
and control design. The stability issues of switched sys-
tems include several interesting phenomena.
known and easy to demonstrate that switching between
stable subsystems may lead to instability'*™. This fact
makes stability and stabilization analysis of switched sys-
tems an important and challenging problem, which has
received great attention'*". Among them,
been considerable growth of interest in using the dwell
time approach to deal with switched systems'*'""".

On the other hand, there are several works concerning
the infinite dimensional DPSS'*?". For example, Farra
et al. """ used Galerkin’s method to control synthesis for a
quasi-linear parabolic equation, in which the
equation is fixed and the controller is switched. Sasane
generalized the finite dimensional switched system'™ to
the infinite dimensional Hilbert space. Ref. [15] shows
that when all the subsystems are stable and commutative
pairwise, the switched linear system is stable under arbi-

trary switching via the common Lyapunov function.
1. [18-19]

It is well

there has

state
[15]

Hante et a
in terms of the the existence of the common Lyapunov
function for the DPSS. Ouzahra'™' considered the feed-
back stabilization of the fixed distributed semilinear sys-
tems using switching controls which does not require the
knowledge of the state of the system. Although much re-
search has been done on stability and stabilization for
switched systems, to the best of our knowledge, the con-
trol synthesis problem for the DPSS has not been exten-

gave necessary and sufficient conditions

sively investigated.

Motivated by the above considerations, in this paper,
we investigate control synthesis of the DPSS via the mul-
tiple Lyapunov function method. We use the semigroup
theory due to the fact that it plays a central role and pro-
vides a unified and powerful tool for the study of the PDE
systems'' . The control design problem concentrates on
the state feedback design problem. The main contribution
of this paper is twofold. First, the controller is designed
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for the DPSS by applying the linear operator inequalities
(LOIs) framework for the first time. Secondly, the suffi-
cient conditions for exponential stabilization are derived in
terms of the LOIs where the decision variables are opera-
tors in the Hilbert space, and the stabilization properties
depend on the switching rule, while the existing work
aims at unswitched distributed parameter systems. Being
applied to heat switched propagation equations with the
Dirichlet boundary conditions, the LOIs are subsequently
reduced to standard linear matrix inequalities ( LMIs),
which has the advantage of being numerically well tracta-
ble by using the Matlab software. Compared with Ref.
[21], it should be pointed out that our stabilization con-
ditions completely depend on the system parameters and
boundary data.

1 Preliminaries and Problem Formulation

Let H, U be separable Hilbert space with the inner
product ¢ + , - ). Notation || - || denotes the usual norm
on H. Let L(U,H) denote the space of the bounded line-
ar operator from U to H, and L( H) denotes the space of
the bounded linear operator from H to H. [ stands for the
identity operator on H or appropriate dimensional identity
matrix.

Finally, let 2CR" be a bounded domain with smooth
boundary 9¢2, and R" denotes the n-dimensional Euclide-
an space. L, ({2,H) is the Hilbert space of square inte-
grable functions x: 2— H with norm || x || ., =

172
(J | x| *dx ) . H' () and H. () denote the classical
0

Sobolev spaces and they are defined as

2
u

H(0) = {ueLz(()) ‘37@2(0)}
H,(N) = {ueLz(.Q) ‘%ELZ(Q) ,u(90,1) =0}

Definition 1'”' Let P: H—H with a dense domain
D(P) CH be self-adjoint, then P=0 (positive) if

(Px,x) =0 VxeD(P) (1)

where P >0 (strictly positive) , iff it is self-adjoint in the
sense that P* = P and there exists a constant m >0, such
that

(Px,x)=m| x|’

VxeD(P) (2)

A,<0,A, <0 mean that -A; =0, - A, >0, respective-
ly.

Definition 2 An operator M € L( H) is called inverti-
ble if there exists an operator N e L( H) such that MN =
NM =1. We write N =M ™' to denote the inverse of opera-
tor M.

Lemma 1 ( Poincare inequality ) ™’  Let scalar func-
tion u e Hy(2,R). Moreover, 2C (), , then we have

LzﬁdxsyZLZ (%)de :yzL\ Vulddx (3)

where 2,:0<x,<8(i=1,2,-,n), y=8//n, V =

90 9 9
(ax1 ox,’ ’axn)'
We consider a general form of the linear distributed pa-
rameter switched control system

X(t) =A,,x(t) + B, u(t) 1=t (4)

with the initial condition
x(t,) =x, (5)

where x € H is the state of the system; u e U is the con-
trol. o:[#,,% )—@ is the switching signal mapping time
to some finite index set @ = {1,2,---,m} , and the switc-
hing signal ¢ is a piecewise constant. The discontinuities
of ¢ are called switching times or switches.

Let {x,;(iy,t,), (i, t,) =, Cig,t,),, |i,e@ ke
N} denote the switching sequence. Switching time 7, < f,
<<ty <t <-ewith limz, = o0, when 7€ Lteotiin) s

the i,-th subsystem is active. The switching time ¢, ,¢,,---
satisfies the following inequality

VkeN (6)

L= =Ty

where 7, >0 is the dwell time.

The objective of this paper is concerned with the con-
trol synthesis problem for switched systems (4 ) and
(5). The control synthesis is related to the design of a
switched state feedback control

u(t) =K, ,x(1) (7)

which ensures the exponential stability of the closed-loop
DPSS

x(t) =[A,, +B, K, x(1) (8)

under some switching law, where K, K, , --
family of gain operators to be determined.

-, K, are a

n

2 Exponential Stabilization Analysis for DPSS
under Dwell Time Constraints

In this section, the exponential stabilization condition
for the switched control system is extended to the distribu-
ted parameter system in the Hilbert space.

Without loss of generality, we make the following as-
sumptions.

Assumption 1 1) The state of the DPSS (8) does
not jump at switching instants; i. e. , the trajectory x(t)
is everywhere continuous. Switching signal o (¢) has a
finite switching number at any finite interval time.

2) Each operator A,(i=1,2,---,m) generates analyti-
cal semigroup 7,(t) and the domain D(A,) C H of the
operator A, is dense in H.
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3) Operators satisfy the conditions B, e L( U,H) and
K,eL(H,U).

Choose the following multiple Lyapunov function can-
didate

V(x’t) :Vzr(1)<xat) :<P1r(t)x(t) ,X(l)> (9)

for (8) in the corresponding Hilbert space D(A;) (i=1,
2,---,m), where operators P,:D(A,)—H and P, >0 sat-
isfy

¥, (x,x) <(Px,x)<y,{(x,x),xeD(A;) (10)

for some positive constants y, ,y, -

Theorem 1 For a given constant 8 >0, suppose that
Assumption 1 holds, if there exist linear operators X; >0
and Y, such that the following LOIs

AX +XA  +BY +Y B +BX,<0 Vie®
(11)
hold in the Hilbert space D (A,) in the sense of (2),
where X, = P,' (X.:D(A,) >H),Y, =KP ' (Y, e
L(H) ). Then the state feedback given by (7) with K, =
Y,P, exponentially stabilizes the systems (4) and (5) for

arbitrary switching signal ¢ (¢) under the dwell time, sat-

_Inp

isfying 7, >7; = where y = max{h}.

ie® 7p,

Proof Systems (4) and (5) with state feedback con-
trol (7) results in system (8). Suppose that Assumption
1 holds, from Corollary 5.2.4 of Ahmed "', it can be
proved that systems (5) and (8) have a unique classical
solution for every x, € H, i.e., systems (5) and (8)
turn to be well-posed on time interval [ ¢,, ) because
the state does not jump at the switching instants.

Choosing the multiple Lyapunov function candidate for
system (8) as the form of (9), where V,=C(H x [ ¢,,
+ ),R"), and operators P, satisfying (10) and the
following inequalities
0 =PA, +PBK, +A P, +K B/ P, +pP,.<0  Yiec®

(12)
For re[t,_,,t ), we can obtain

<P(r(tk,,)'x( t) ,X(I) > = V( I) $‘yp,,uu, ” ‘x(tk—l ) ” ’

By using (10), it follows that

Ye,.,

lx(o) 7<= N, P spllxCo) 17 Veelnn)

Pou, )
It is easy to calculate that
lx(o) |7 <p | x(,_) | ° <
pe T x () 17 s
lﬁefﬁ(f*'m)e*B(’m*'H) ” x(tk,z) H 2$

we T x(1 ) |

e () ||

for all =1, and constant = 1. Noticing the fact that
(k-1)7,<t-t,, then

Fx(e) || Fspe e | x(n) |7 <

e R (13)
Let A :B—ln’u‘>0, where 7, >M:7;.
Td
We now derive that || x(1) || <vue " || x(z,) || -

This shows that the overall DPSS (8) is exponentially
stable for arbitrary switching signal with the dwell time 7
>7, =In w/B. The proof is completed.

The inequalities (12) for (P,,K;) is not LOIs. Here,
in a similar manner as that in the ODE case, we use the
operator transformation method. Let LOIs (12) be trans-
formed into LOIs (11). It is easily shown by left-and
right-multiplying P;”' and (P, ') " ; moreover, (P,')"
=P', where X,=P;'(X,:D(A,)—>H),Y, =K.P' (Y,
eL(H)).

Remark 1 From the proof of Theorem 1, we find

that A = B _ ILLi; thus Asﬁ. This demonstrates that
2 2 27, 2 72

the decay rate of the overall DPSS (8) is smaller than
that of its subsystems. In particular, when there is no
switching, we have 7,—c0 , in this case, the decay rate
A is equal to 8, which is just the decay rate of the subsys-
tems.

3 Application of Two Dimensional Switched Heat

Propagation Systems

For the following switched heat propagation control
system

y[(xayyt) :Dg(z) vzy('x9y’t> +B(r(1)u(t)
(X,y,t) € [O’ﬁ] X[Oy\/i] X [to’ +°°)

Let the boundary value condition be

(14)

y(x,y,t) =0 (x,y,1) €ed2x[t,, + ) (15)

The initial condition is

,V(X,y,lo) =Y (]6)
We consider that the static state feedback is
u(t) =K, ,y(1) (17)

Ensure the exponential stability of the closed-loop
DPSS to be

yl(x’y7t) :Dg'([) VQy(x»y’t) +Bg—(z)Kg(y)y(x’y’t)
(X,y,t) € [0’“/5] X [07\/27] X [tk_l’tk)
y(x,y,0) =0 (x,y,0) €2 x[1,, + )
y('x’yato) :yO

(18)

where y = (y,,¥,,*,¥,) € R" is an n-dimensional state



392

Bao Leping, Fei Shumin, and Zhai Junyong

vector (the state vector of the control system). u = (u,,
u,,-,u,) e R is an [-dimensional control vector. (2 =
[0,/2] x[0,/2 ] CR’ is a bounded domain with smooth
boundary 9() and state variable vector(x,y) e 2. re[1,,
o ) is the time, ke N. Each D, =diag(d, ,d,, - ,d,,)
is a positive diagonal matrix. B,,K,(ie ) are appropri-
ate dimensional constant matrices. § = {1,2}, V  denotes
@

the Laplace operator; i.e., V> == +— and V denote
J9x"  ay
. . 9 9
th dient; i.e. , V = ——,7|.
e gradient; i.e. , (ax ay)

For a precise characterization of the class of the PDE
systems considered in this paper, we formulate the system
of Eq. (14) as an infinite dimensional system in the Hil-
bert space H =L, ({2,R")) with H being the space of suf-
ficiently smooth n-dimensional vector functions defined
on () that satisfy the boundary condition (16).

Define the state function x on H as

x(t) =y( -, 1) t=t, (19)

the operators A, =D, V> =D, i2+D1 iz, A, =D, V?
ax ady

=D, io +D, %; then Eq. (14) can be rewritten in the
0x” ay

form of Eq. (4) and the first equation of (18) can be re-
written as Eq. (8), respectively, where the operator A,
has the dense domain

D(A) ={yeH (2,R")NH,(Q,R") :y(x,y,t) =
0,(x,y) e a0} (20)

It is easily known that operators A, and A, generate an-

alytical semigroups T, (¢) and T, (¢), respectively, and

system (18) has a unique classical solution”’.

The multiple Lyapunov function is chosen as

2 2 .
V(1) = Vo (1) = [ [ 3T (xry.0P,p(ey.0 dedy
1)

with positive constant diagonal matrices P,.
Differentiating (21), we find that

i
((A" P, +PA )xx) = f:f:( V’y'DPy +y'P.D, V’y)dxdy

for xe D(A,).

Because P,, D, are constant diagonal matrices, then
PD . =D.P..

Noticing that P,,D, are positive diagonal matrices, we
have

2 2
<<At* Pi +PiAi)‘x’x> g ZAmz\x(PiDi>f ffvzyTIydxdy g
0Jo

Vi

27
ZAW(P,-D,-)IO fﬂ (92,0, 9% ]| @ |dedy <

y)’l

ﬁ ﬁ 2 2
2Amax(P[D,-)f0 fo (3 Vy, + - +y,Vy,)dxdy

hold in corresponding xe D(A,) (i=1,2).

Integrating by part, according to the famous Green’s
first identity and boundary condition (15) , we can obtain
the following inequalities

((A’ P, +PA)x,x) <-2),. (PD,) -
2 7 )
fofo( [ Vy [P+ [ 0y,

According to Poincare’s inequality (3), we can obtain

*) dxdy

((A] P, +PA)x,x) <

22 ) s
_2)\max(PrDi)J0 JO ( ‘yl " 4 e 4+ ‘yn )dxdys

2 7 2 2
_zl\max(PiDi)fFJ yTIyd’Xdy g f/"[\/’yT(_ZPIDl)dedy
0oJo 0Jo
Then we have

(0x(t),x(t))<{(-2PD, +PBK, +
K! B P, +BP,)x(t),x(t)) <0

provided that the following inequalities

-2P.D,+PBK, +K, B/ P, +BP,<0  (22)

are satisfied.
By the similar argument used in Theorem 1, it can be
easily seen that (22) is equivalent to

-2DX,+BY, +Y B +BX, <0 Yie®(23)

So, the following result is obtained.

Theorem 2 For a given constant 8 >0, if there exist
diagonal constant matrices X, >0 and matrices Y,, such
that the LMIs (23) are feasible, where X, = P,',Y, =
K.P;'. Then the state feedback given by (7) with K, =
Y,P, exponentially stabilizes systems (14) to (16) for ar-
bitrary switching signal o (¢) with the dwell time satisfy-
ingry>7; = hl?’u“,p, = rg%x{jt::((;::;}

Remark 2 The idea of the LOIs is first applied to the
study of distributed parameter systems in Refs. [ 25 —
26 7. As it is shown, these LOIs are subsequently reduced
to standard LMIs, which provide a new insight into the
control theory of distributed parameter systems. Inspired
by the above works, we utilize LOIs to the DPSS for the
first time, and generalize the stability result of ODE
switched systems'*’ to the DPSS.

4 Examples

In this section we consider two examples to illustrate
the proposed results.
Example 1  Utilize Theorem 2 for the switched heat
propagation Eq. (18) with
1 0 2 0
D=y o] 2:=[5 3]
Lo 2 =10 3
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0.1 0.2

B':[O.l 0l 2:[0'1 _0.1]

0.3 0.2

Let 3=0.5, by resolving LMIs (23), we obtain the
state feedback matrices

1:[ -0.2234 3.5533]’ :

-0.4655 4.4633
0.3389 —-1.555 ]

"1 -0.7438 3.1579

_Ing In2.2095
28 2x0.5
the dwell time 7, = 1.8 > 7.

DPSS (18) is given by

Then 7, =0.792 8. We can choose

Thus the state decay for

[y(e) || <2.2095e "™ |y, |
Example 2  Consider the switched heat propagation
Eq. (18) with the following parameters:

1 00 2 0 0

Dlz[O 2 0],D2=[0 2 0]
0 0 1 0 0 1
1 2 1 1 1 2

Bl_[Z 2 3],BZ=[1 0 3]
1 3 2 2 3 1

Let 3 =0.7, by resolving LMIs(23), we obtain the
state feedback matrices:

-0.1935 0.106 4 0.1000
Klz[ 0. 060 3 -0.046 6 —0.0023]
0.0383 0.1956 -0.1814
-0.0844 0.068 8 -0.0467
Kzz[ 0.2104 -0.0815 —0.1152]
-0.1650 0.1725 -0.0070

and = 1.7432. Then 7, :1%5:%

Thus the state

=0.3969.

We can choose the dwell time 7, =2 > 7, .
decay for DPSS (18) is given by

||y(l> || $1.743 2670.4222([7'0) || Y, ||

5 Conclusion

In this paper, based on the semigroup and operator the-
ory, some sufficient conditions of exponential stabiliza-
tion for a class of linear DPSS are derived in a LOIs
framework. We transform the LOIs into the LMIs, which
has the advantage of being numerically well tractable by
using the Matlab software. The control synthesis is inves-
tigated by means of the multiple Lyapunov approach. Fi-
nally, two examples are given to illustrate the effective-
ness of the proposed results.
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