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Abstract: A direct linear discriminant analysis algorithm based
on economic singular value decomposition (DLDA/ESVD) is
proposed to address the computationally complex problem of
the conventional DLDA algorithm, which directly uses ESVD
to reduce dimension and extract eigenvectors corresponding to
nonzero eigenvalues. Then a DLDA algorithm based on
column pivoting orthogonal triangular ( QR) decomposition
and ESVD (DLDA/QR-ESVD) is proposed to improve the
performance of the DLDA/ESVD algorithm by processing a
high-dimensional low rank matrix,
pivoting QR decomposition to reduce dimension and ESVD to
extract eigenvectors corresponding to nonzero eigenvalues.
The experimental results on ORL, FERET and YALE face
databases show that the proposed two algorithms can achieve
almost the same performance and outperform the conventional
DLDA algorithm in terms of computational complexity and
training time. In addition, the experimental results on random
data matrices show that the DLDA/QR-ESVD algorithm
achieves better performance than the DLDA/ESVD algorithm
by processing high-dimensional low rank matrices.
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he direct linear discriminant analysis ( DLDA) is an
Timportant method for dimension reduction and fea-
ture extraction in many applications such as face recogni-
tion"™, microarray data classification', text classifica-
tion™. Yu and Yang'" first proposed the DLDA algo-
rithm based on eigenvalue decomposition (DLDA/EVD)
by utilizing the information of the range space of be-
tween-class scatter matrix S, and within-class scatter ma-
trix S, for face identification. In recent years, many ap-

Received 2013-05-21.

Biographies: Hu Changhui( 1983—), male, graduate; Lu Xiaobo( cor-
responding author), male, doctor, professor, xblu@ seu. edu. cn.
Foundation item: The National Natural Science Foundation of China
(No.61374194) .

Citation: Hu Changhui, Lu Xiaobo, Du Yijun, et al. Direct linear dis-
criminant analysis based on column pivoting QR decomposition and eco-
nomic SVD [ J]. Journal of Southeast University ( English Edition),
2013,29(4):395 —399. [ doi: 10. 3969/j. issn. 1003 —7985. 2013. 04.
008]

proaches have been brought to improve the DLDA algo-
rithm. Song et al. "™ proposed a PD-LDA algorithm by
introducing a parameter 3 to improve the recognition rate;
however, the improvement is not obvious and the choice
of parameter 3 is difficult. Paliwal and Sharma'* devel-
oped an improved DLDA algorithm to improve classifica-
tion accuracy for DNA datasets; however, it is improper
to deal with high-dimensional data such as face recogni-
tion.

Dimension reduction and eigenvectors extraction corre-
sponding to nonzero eigenvalues are the main tasks of the
DLDA algorithm. To achieve the two tasks, Yu and
Yang’s algorithm adopts the principal component analysis
(PCA ) method and EVD; Song and Paliwal’s™* algo-
rithms use singular value decomposition (SVD). All the
algorithms mentioned above are computationally com-
plex. In this paper, two improved DLDA algorithms are
proposed to reduce the computational complexity of the
conventional DLDA algorithm.

In this paper, we propose the DLDA/ESVD algorithm
that directly uses economic singular value decomposition
(ESVD) to reduce dimension and extract eigenvectors
corresponding to nonzero eigenvalues. Then we further
propose the DLDA/QR-ESVD algorithm that uses high-
performance column pivoting orthogonal triangular ( QR)
decomposition to reduce dimension and ESVD to extract
eigenvectors corresponding to nonzero eigenvalues. The
proposed two algorithms are efficient and outperform the
conventional DLDA algorithm in terms of computational
complexity. In addition, the DLDA/QR-ESVD algorithm
achieves better performance than DLDA/ESVD algorithm
by processing high-dimensional low rank matrices.

1 Direct Linear Discriminant Analysis

A brief overview of the DLDA algorithm is presented
here. The DLDA algorithm aims to find a projection ma-
trix that diagonalizes both within-class scatter matrix S,
and between-class scatter matrix S, simultaneously. In the
DLDA algorithm, within-class scatter matrix S, and be-
tween-class scatter matrix S, are defined as '’

So =3 Y mu) e p)" (D)

S, = > %(Mi ) (p; —p)’ (2)

i=1
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The precursors'” H and H, of the within-class scatter
and between-class matrices in Egs. (1) and (2) are

1
H,=—(X, -pe, ...X. —p.e.) (3)
n

"
Hy= (/o =), o /1 (p —p)) ()
Jn

where e, = [1, ..., 1] € R"; X, is the data matrix of the
i-th class; u, is the mean of the i-th class, and g is the
mean of the training samples; c is the number of training
sample classes and 7 is the number of training samples. It
is easy to verify that S, = H H| and S, = H H,, where
S, eR”, § eR"™, H, e R""", H, e R"*°. The
procedure of the DLDA/EVD algorithm can be summa-
rized as follows.

Step 1 Calculate an orthogonal matrix V using PCA
such that V'S,V = A. The null space of S, carries no use-
ful discriminant information', so the zero-value diagonal
elements of A are discarded. Let Y be the » columns of V
corresponding to the nonzero eigenvalues of S,; thus,
Y'S,Y=D, >0. Let Z=YD,"*; obviously Z'S,Z =1,.

Step 2 Find an orthogonal matrix U using eigenvalue
decomposition such that U'Z'S ZU = D,,. 1t is easy to
verify that the matrix U'Z" simultaneously diagonalizes
both S, and S,. The projection matrix of the DLDA/
EVD algorithm is W=D_"*U'Z" =D_,"?U'D,;"’Y".

2 Proposed algorithms

First, the DLDA/ESVD algorithm is presented in de-
tail, and then we further present the DLDA/QR-ESVD
algorithm, which can obtain better performance than the
DLDA/ESVD algorithm by processing a high-dimension-
al low rank matrix.

2.1 DLDA/ESVD algorithm

In the DLDA/ESVD algorithm, the rectangular matrix
H, in S, = H H, can be decomposed into orthogonal ma-

trix @, e R"*°, diagonal matrix D, € R°*", and orthogo-
nal matrix V, e R using the ESVD'"' as
H, = QthVh (5)

Discard the zero-value diagonal elements of D, with
corresponding orthogonal eigenvectors of @, and V,, and
then we obtain @, e R"*", D, e R” and V, e R™,
where rank(H,) =r. It is easy to verify that

H,=0,D,V, (6)
Substituting Eq. (6) into S, = H, H,, we obtain

S, = behvb(ghbbvb)T = QbDbeV:DhTQhT =

0,0,’0,’ (7)
Thus, it is easy to verify that
(beb_])TSb(QbDb_]) =1 (8)

Let Z=Q,(D,") "', and the dimension of symmetric
matrix S, can be reduced by Z as Z'S_Z. The symmetric

matrix Z'S Z can be decomposed into orthogonal matrix
U, e R and diagonal matrix D, € R™" by using the
ESVD, and it can be presented as

Z'SZ=UD,U. (9
Since
(U,2)8,(U,2")" =U,(0,D,")'S,(2,D,HU, =
U.1LU, =1,

(U,Z2HS (U, Z"Y"'=U,Z"S,ZU, =
UI\/ UWDW U; UW = DW

matrix U, Z" can diagonalize both within-class scatter ma-
trix S, and between-class scatter matrix S, simultaneous-
ly, and the projection matrix of the DLDA/ESVD algo-
rithm is W = D_,?U.Z" = D;"? U. D,'Q,". The
DLDA/ESVD algorithm is summarized as below:

Step1 H, is decomposed as H, = Q,D,V, by using
the ESVD. Discarding the zero-value diagonal elements
of D, with corresponding orthogonal eigenvectors of Q,
and V,, and then we obtain @, e R"*’, D' e R, V,
e R, where rank (H,) =r, Z=0,(D,") "

Step2 Z'S Z is decomposed as Z'S ,Z = U D U,
by using the ESVD, and the projection matrix of the
DLDA/ESVD algorithm is W = D 7U.Z" =
D, U D,'0,"

2.2 DLDA/QR-ESVD algorithm

From Step 1 of the DLDA/ESVD algorithm, if we can
directly acquire Q, without calculating @, by processing a
high-dimensional low rank matrix, the performance of the
DLDA/ESVD algorithm can be further improved, while
the column pivoting QR decomposition can solve this
problem. In the DLDA/QR-ESVD algorithm, the rectan-
gular matrix H, in S, = H H, is first decomposed into or-
thogonal matrix @, € R"™’, upper triangular matrix R,
R, and permutation matrix E € R™ (EE' =1

rank(H,) = r) using column pivoting QR decomposi-
17

rxr?

tion'" as
H =0RE (10)
Substituting Eq. (6) into S, = H,H;, we obtain
S, =(Q,R.E)(Q,RE)" =Q,R,R; O, (11)

Then matrix R, can be decomposed by the ESVD as
R, =U,D,V, (12)
where both U, and V, are orthogonal matrix; D, is a diag-

onal matrix; and U, e R, D, eR™, V, e R™".
Substituting Eq. (12) into Eq. (11), we obtain
S,=0,UD,V.EE"V,D;Q, =Q,U,D.U,Q,
Thus, it is easy to verify that
(Q,U,D;")'S,(Q,UD;") =1, (13)

Let Z=Q,U,D,". The dimension of symmetric matrix
S, can be reduced by Z as Z'S Z. The symmetric matrix
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Z'SZ can be decomposed into orthogonal matrix U, e
R, and diagonal matrix D, € R™*" using the ESVD is

Z'S,Z=UD,U, (14)

Since

(UIZ")S,(UZ"' =UL(Q,U,D;")"S,(Q,UD; U =
UlLU. =1,
(ULZ"HS,(UZNY' =UZ"S,Z2'U" =
UlUD UU =D,

matrix ULZ" can diagonalize both within-class scatter ma-
trix S, and between-class scatter matrix S, simultaneous-
ly, and the projection matrix of DLDA/QR-ESVD algo-
rithm is W = D;?U.Z" = D;?U.D;'U.Q;. The
DLDA/QR-ESVD algorithm is summarized as follows:

Step1 H, is decomposed as H, = O R E by using
column pivoting QR decomposition, and then R, is de-
composed as R, = U, D,V, by using the ESVD. Let Z =
QbUbDl;l ‘

Step2 Z'S,Z is decomposed as Z'S ,Z = U, D U,
by using the ESVD, and the projection matrix of the DL-
DA/QR-ESVD algorithm is W = D_ULZ" =
D.U.D, U,Q;.

3 Experiments

The experiments are used to verify the efficiency of the
proposed two algorithms and the performance of the
DLDA/QR-ESVD is better than that of the DLDA/ESVD
by processing a high-dimensional low rank matrix. First,
experiments for the DLDA/EVD, DLDA/ESVD and
DLDA/QR-ESVD algorithms are conducted on ORL™,
FERET™ and YALE"" face databases. Secondly, the
comparison testing between the DLDA/ESVD and the
DLDA/QR-ESVD are conducted on random matrices.
The experiments are tested on the PC with Core™?2 Duo
2.99 GHz processor with 1.96 GB of RAM using Matlab
7.0 software.

3.1 Experiments on face databases

Tab. 1 introduces three face databases in experiments,
where Size stands for the number of all images in each
database; Dimensions are the dimensionalities of image
vectors; and Classes are the number of persons.

Tab.1 Description of three face databases

Database Size Dimensions Classes
ORL 400 10 304 40
FERET 490 10 304 10
YALE 165 45 045 11

In each face database, the recognition rates and the
training time of the DLDA/EVD, DLDA/ESVD and DL-
DA/QR-ESVD algorithms are tested. The recognition
rates are used to evaluate the accuracy of the three algo-
rithms. The training time is used to measure the computa-
tion time of each algorithm for dimension reduction and
feature extraction, and the difference of the execution
time in databases is mainly caused by the training time

using different algorithms.

There are three main steps for testing the aforemen-
tioned algorithms. First, training sets are randomly se-
lected from the face database, and the rest forms testing
sets. Secondly, the training sets are trained to achieve di-
mension reduction and feature extraction using the above
three algorithms under the same conditions, and the train-
ing time of each algorithm is recorded. Finally, both the
training sets and the testing sets are projected into the op-
timal LDA subspace, and the nearest neighbor classifier
based on the Euclidean distance is adopted to be the final
classifier'""". The final result we take is an average result
of classification for 40 times based on cross-validation ex-
periments.

Fig. 1 shows the recognition rates on ORL, FERET and
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Fig.1 Recognition rates on different databases. (a) ORL face
database; (b) FERET face database; (c) YALE face database
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YALE face databases by using the DLDA/EVD, DLDA/
ESVD and DLDA/QR-ESVD algorithms, respectively. It
can be seen that the three algorithms achieve almost the
same recognition rates on the three face databases under
different numbers of training samples.

Fig. 2 shows the training time on ORL, FERET and
YALE face databases by using three algorithms respec-
tively. It can be seen that the training times of the DL-
DA/ESVD algorithm and the DLDA/QR-ESVD algo-
rithm are distinctly lower than those of the DLDA/EVD
algorithm on the three face databases. The proposed two
algorithms consume almost the same training time; the
reason is that the rank of between-class matrix S, is ap-
proximately equal to the number of training sample clas-
ses (c=r) on the three face databases.
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Fig.2 Computation time on different databases. (a) ORL face
database; (b) FERET face database; (c) YALE face database

3.2 Experiments on random data matrices

As it is difficult to find a public database with high-di-
mensional low rank data matrices to test the DLDA/ES-
VD and DLDA/QR-ESVD algorithms. Random data ma-
trix H e R"*“(rank( H) = r) with variable dimensions m
from 5 000 to 10 000 are generated to verify the proposed
two algorithms. Fig. 3(a) shows that the proposed two
algorithms can achieve similar computation time by pro-
cessing high-dimensional full rank matrices (¢ = r =
500). Fig.3(b) shows that the computation time of the
DLDA/QR-ESVD algorithm is distinctly lower than that
of the DLDA/ESVD algorithm by processing high-dimen-
sional low rank matrices (r<c, ¢ =800, r=200).
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Fig.3 Computation time on random data matrices. (a) High-
dimensional full rank matrices; (b) High-dimensional low rank matrices

4 Conclusion

In this paper, the DLDA/ESVD algorithm is pro-
posed, which directly uses the ESVD to reduce dimension
and extract eigenvectors corresponding to nonzero eigen-
values. Then we further propose the DLDA/QR-ESVD
algorithm that uses high-performance column pivoting QR
decomposition to reduce dimension and ESVD to extract
eigenvectors corresponding to nonzero eigenvalues. The
proposed two algorithms outperform the DLDA/EVD al-
gorithm in terms of computational complexity and training
time. The proposed two algorithms consume almost simi-
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lar computation time by processing a high-dimensional
full rank matrix (7 =c). But the computation time of the
DLDA/QR-ESVD algorithm is distinctly lower than that
of the DLDA/ESVD algorithm by processing a high-di-
mensional low rank matrix (r<c).

It is worth exploring in two directions. First,
computationally efficient way of reducing dimension is
crucial in many fields of research, a number of applica-
tions of the DLDA/ESVD and DLDA/QR-ESVD algo-
rithms should be envisaged. Secondly,
analysis of the proposed two algorithms should be further
studied.

since a

the theoretical
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