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Abstract: A fuzzy observations-based radial basis function
neural network ( FORBENN )
nonlinear systems in which the observations of response are
imprecise but can be represented as fuzzy membership
functions. In the FORBFNN model, the weight coefficients of
nodes in the hidden layer are identified by using the fuzzy
expectation-maximization ( EM ) algorithm, whereas the
optimal number of these nodes as well as the centers and
widths of radial basis functions are automatically constructed
by using a data-driven method. Namely, the method starts
with an initial node, and then a new node is added in a hidden

is presented for modeling

layer according to some rules. This procedure is not
terminated until the model meets the preset requirements. The
method considers both the accuracy and complexity of the
model. Numerical simulation results show that the modeling
method is effective, and the established model has high
prediction accuracy.
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adial basis function ( RBF) neural networks have

been applied and evaluated in a wide variety of
fields' ™.
sume a perfect knowledge of the values of the response
for learning samples. That is to say, the observations are
supposed to be precise (i.e., point-valued). However,
in many real-life situations, such standard observations
cannot be obtained.

Most of the recent RBF neural networks as-

Information about the response is
usually obtained through measuring devices or sensors
with limited precision. Therefore, it is necessary to ex-
tend the RBF neural networks to deal with imprecise data
and propose a new methodology in the imprecise setting.
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Up to date, there is little literature on extending the RBF
neural networks to deal with imprecise data. Cheng and
Lee'" proposed a fuzzy version of the RBF neural net-
work, in which the weight coefficients are assumed to be
fuzzy. In this regard, the output of such a fuzzy RBF
neural network is fuzzy,
weight coefficients usually leads to learning complexity.
In practice, it is more appropriate to obtain precise pre-
diction in some sense, although the training samples can
only be imprecise. In this paper, we suppose that the im-
precise data are represented by fuzzy membership func-
tions and investigate the RBF network regression with
crisp inputs and fuzzy output. Unlike the existing family
fuzzy RBF neural networks, our proposed method does
not require the weight coefficients to be fuzzy, which re-
duces the learning complexity, and the prediction output
is precise point value.

and the application of fuzzy

There exist two obstacles preventing the classical RBF
neural networks to deal with imprecise data. The first one
is how to determine the radial basis functions (i.e., the
centers and widths of nodes in the hidden layer) when the
response is a fuzzy membership function. The second one
is how to identify the linear functions (i.e., the weight
coefficients of nodes in the hidden layer) when observa-
tions (of responses) are fuzzy membership functions. To
solve the first problem, we propose a data-driven auto-
matic method. This method treats the input data and out-
put data separately, but it considers both the structure of
input data and the performance of the RBF neural net-
works so as to find the optimal number of nodes in the
hidden layer with an acceptable accuracy. To identify fi-
nal linear behaviors, a novel algorithm for estimating pa-
rameters in a fuzzy setting is needed. Recently, a signifi-
cant contribution is the extension of the expectation-maxi-
mization (EM) algorithm'™ to fuzzy data, i.e., the so-
called fuzzy EM algorithm' . Using the fuzzy EM algo-
rithm, the weight coefficients in RBF neural networks can
be identified when observations are fuzzy membership
functions. Therefore, we propose a fuzzy observations-
based RBF neural network (FORBFNN) regression model
and it can be automatically data-driven.

1 Fuzzy EM Algorithm

Let X, referred to as the complete-data vector, be a
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random vector, taking value in sample space y and descri-
bing the result of a random experiment. The probability
density function (pdf) of X is denoted by g(x, i), where
Y ={4,,,,....,p,}" is a column vector of unknown pa-
rameters with parameter space ().

If x, a realization of X, is known exactly, we can
compute the maximum likelihood estimate (MLE) of ¢
as any value maximizing the complete-data likelihood
function:

L(y;x) =g(x;4) (D

However, x is usually not observed precisely, e. g.,
only partial information about x is available in the form of
a fuzzy subset x of (2,. Therefore, the complete-data
likelihood function (1) should be extended. Given ¥ and
assuming its membership function to be Borel measura-
ble, the probability of fuzzy set ¥ can be computed ac-
cording to Zadeh’s definition of the probability of a fuzzy
t ", Thus, the observed-data likelihood in the im-
precise setting can be defined as

cven

L(g:%) = P(T:9) = Lnx(x)g(x;l/f)dx (2)

In the special case where the complete data x = {x,, x,,
...,x,}" is a realization of an independent identically dis-
tributed (i.1.d.) random vector X = {X,, X, ..., X, }T,
assuming the joint membership function . to be decom-
posed in the product of,ugi‘(i =1,2,...,n), i.e.,

He(X) = H'U“*(x") (3)

the likelihood function (2) can be written as a product of
n items,

L) = ] fu (0 gz 4)
and the observed-data log likelihood is
logL(y:x) = Y logfu, (x)g(x:gndr  (5)

The fuzzy EM algorithm' approaches the problem of
maximizing the observed-data log likelihood logL (s, X)
by proceeding iteratively with the complete-data likeli-
hood logL (¢, x) = logg(x, ). Each iteration of the
fuzzy EM algorithm involves two steps, the expectation
step (E-step) and the maximization step (M-step).

The E-step consists in the calculation of

O, ') = E,(log[L(g; X)] | %) =
fu;log[L(tp; x)1g(x, ') dx
L(g'"; %)

where the expectation of log L( 4, X) is taken with re-

spect to the conditional pdf of x given X, using parameter

vector " .

(6)

we(x) g(x | ')
Jpe(w) gu | ) du

g(x ‘X.;l[l(q)) —

The M-step requires the maximization of Q(af, '”)
with respect to ¢s over the parameter space (2, i.e., find-
ing """ such that

Q(l'l’(l]*'])’ w(‘l)) BQ(U//, lll(q))

The fuzzy EM algorithm alternately repeats the E- and
M-steps until the increment of observed-data likelihood
becomes smaller than some threshold.

Wel)

2 Proposed RBF Neural Network Based on
Fuzzy Observations

2.1 Identification of radial basis functions

The basic topology of the RBF neural network compri-
ses in sequence a hidden layer and a linear processing unit
forming the output layer. Fig. 1 depicts this topology of a
multi-input single-output network, where c¢ represents the
number of nodes in the hidden layer. The set of input-
output data pairs can be symbolized as 7= {(u,, x,) e R’
x R \ x;,=f(u;), i=1,2,...,n}, where n is the number
of training samples, u, = {u,, u,, ..., u, }" is the i-th
p-dimensional input vector and x; is the i-th output varia-
ble. The Gaussian type RBF functions with the following
form are selected:

e, v, I
hy(u,) = exp( —iz) (7
Sk

where v, is the p-dimensional center and s, is the width of
the k-th (k =1, 2, ..., ¢) hidden unit of the RBF;
Hui -V, | is an Euclidean distance between the input vec-
tor and the center. The estimated output of the RBF neu-
ral network can be calculated using the following linear
regression functional:

% = fu) = 3 wh(u) (8)

Fig.1 Basic topology of an RBF neural network

This section presents the strategy to identify radial basis
functions when the observations are in the following
form:

T={e |e,=(u,x), i=1,2,...,n} 9

where ¥, is the imprecisely observed values of response x,
represented as a fuzzy membership function.
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To address the proposed strategy, a new performance
measure is first needed, which is called mean square
fuzzy expectation error and defined as

1 ¢ 1 ¢
MSEf\lzzy = 7; MSEfuZzy,[ = 7; ||E[5C,] - -x,'”z
(10)

where E[X,] = f wu; (w) dw is the fuzzy expectation as-
o

sociated to X,. When X, degenerate to be crisp point val-
ues, criteria (10) will degenerate to be the traditional
mean square error (MSE).

The proposed strategy is an iterative procedure with
two termination conditions: 1) The approximate accuracy
is not higher than a given acceptable performance g,
i.e., MSE, <g; 2) The number of nodes in the hid-
den layer (i.e., node base) is bigger than a given maxi-

fuzzy

mum number R i.e., ¢>R_, . Either condition 1) or

condition 2) is satisfied, the iteration is then terminated.
These two conditions can ensure a desirable tradeoff be-
tween the accuracy and the size of the node base accord-
ing to the designer’s intuition or expertise.

First, an initial node in the hidden layer is generated.
The initial node is extracted by a simple method. The
center and width of such node are determined by

1 « .
vlj - 72 Mij ] = 1,2, e P (11)
i=1

1 n
: =Jn_1;|ui—vl|

In this original initial node base, the weight coefficients
are identified using the fuzzy EM algorithm, which will
be detailed in the following section.

Secondly, a new node in the hidden layer is construc-
ted. The vector that has the worst MSE,,, ,, denoted by
u,, is considered as the candidate center of this new
node:

? (12)

u, ={u, | MSE,,, ;= max {MSE,,, }} (13)

fuzzy, j

Because the candidate center is only based on perform-
ance error, it is possible for an outlier to be considered as
a new center. Although the preprocessing of data maybe
detects and eliminates the outliers, it is still needed to re-
duce the effects of the noisy data and exclude the chance
of an outlier to become a center. In addition, we do not
want the new candidate center to be too close to the exist-
ing centers. Therefore, the following conditions should
be satisfied:

N ouis = A, (14a)
i=1

__min Nu, -v, =4, (14b)

where A, and A, are constants; u, ,is the membership de-

gree of the i-th data belonging to the i’-th cluster, deter-
mined in the following way ''":
-1

(15)

‘. d;, - mind; ,
,u/i'l_, = ( 7)

2 . p
= d;, — mind, ,

where d, , is the distance between the i-th sample and the
k-th center, defined as d, = |lu, -v,|, and the item
k=1,2,...,c}

—v. The bigger the , the wider the width of the mem-
bership function. Usually, we have y >0.

The role of condition (14a) is to prevent an outlier to
be a new center, and the condition (14b) ensures that the
new center is not located very close to the other existing
centers. Hence, the constants A, and A, can be defined as

A = 12 Z/"Lik
C =1 im1

)
mind; ,

. . . 2 . 2
is defined as mind; , = min{d;,
v

(16)

n
Zlu‘ii’ Hu, - ui' ||2
— _t=

n

2
Z/'Li,i’
=1

where 0 <7 <1 is a soft factor used to control the effects
of the average membership degrees of all data over all
centers. Through our experiments, we find that some-

n

times there are no points in the data set satisfying Z s
i=1

A, (17)

¢

= %2‘] Z]‘/.Lf . - In other words, we usually can only

=
obtain one node, i. e., the initial node base. In this
case, the constraint can be softened by using a small 7.

If the selected vector u, satisfies (14), then it is de-
clared as the center of a new node. Otherwise,
marked as an outlier and the process of selecting the vec-
tor that has the worse performance is repeated without
considering the outliers. When none of the existing vec-
tors satisfies (14), the procedure is terminated to avoid
over-fitting. The center and width of the new node are
defined as

it is

=u,; j=1,2,...,p or v_ =u, (18)

new i

n
S i, - v, I
.
2
D M
i=1

Finally, once the new node is added to the node base,
the node number increases one, i.e., ¢c=c +1, and we
have v_=v ., s.=s,,. Due to the added node, the node
base should be updated. The centers v, of the previous (¢
—1) nodes existing in the node base can be maintained
whereas their widths s,(k=1,2, ..., c —1) can be updated
according to Eq. (19) only by replacing index i’ with the
index k (k=1,2,...,c-1).

From the above interpretations, it is evident that the

(19)
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computational complexity of the proposed strategy is
nO(R

max) °

2.2 Identification of weight coefficients of RBF by
fuzzy EM algorithm

For the following discussion, we first transform the es-
timated output in Eq. (8) to the following vector or ma-
trix form:

£=hw or £=H'w (20)
where
h,(u,) w,
h, = hz(.ui) . Mfz
h(_(.u,.) m;(_
hy(u)  hy(uy) h.(u,)
H- hl(ftz) hz(ftz) hc(.uz)
h(u,) hy(u,) h.(u,)

To solve the above regression with fuzzy membership
functions as output, it can be assumed that each compo-
nent x, of the complete-data vector x is a realization of a
normal random variable X, with mean h;w and standard
deviations ¢, and an observer encodes his/her partial and
uncertain knowledge of x; in the form of fuzzy member-
ship functions x,. With such assumption, the complete
parameter vector is thus ¢ = (w", o) " that should be iden-
tified in the case where only X, can be observed.

According to the above interpretations, the complete-
data pdf can be defined as

n

g(x;p) = Hg(xi;z!r) =

ﬁ ! exp(
=t o /2w

By using the complete-data pdf, the complete-data log
likelihood is computed as

- (x, —h?w)z)

20"

(21)

logL(yr:x) = ¥ logg(x;:4h) =~ log(2m) ~

1

(x"x =2w"Hx + w"HH"w)
20°

(22)

nlogo -

Taking the expectation of logL(#, x) conditionally on

the observed X, and using the approximation of i, 4",

to perform the E-step, we can obtain
O ') = E,.(loglL(g:0)] | %) = = Tlog(2m) -

(X o —2w'HB" +w HHW ) (23)
i=1

nlogo — 1
g 257

where o” =E,.(X;
(E,.(X | %) = {E,.(X,

x), B =E,.(X, |x) and g'” =

), n B (X, 130} )

and B!’ can be computed using the following equations.

For the sake of simplification, let us assume that P is
the distribution of a univariate normal random variable X
with mean m, standard deviation ¢ and pdf g(x). Let X
=(a, b, ¢) be a triangular fuzzy number, with member-
ship function

=
|
S

b—a asx<b

m(x) =<c—x h<x< (24)
c-b
0 otherwise

Denoting by g(x) the pdf of X, the probability of X can
be calculated as

- 1 b .
P(D) = Elu (0] = ;[ xg(de = L(@(b) -
B(a’)) + o D(c7) ~D(b)) -

-
. 1_ bf;xg(x)dx (25)

where @( - ) denotes the cumulative distribution function
(cdf) of the standard normal distribution, and x* denotes
(x—=m) /o for all x. It is easy to obtain that

Sfe( -4 ) - e( - 5]+

v
m(P(b™) —®(a”)) (26)

jhxg(x)dx =

Eq. (26) makes it possible to complete the calculation of
P(x) using Eq. (25).

Let us now compute the expectation of X given x for
the conditional density of X. We have

o Jmoxe(oax
S e

E(X (27)

where the denominator is given by Eq. (25). The numer-
ator is

a

fszg(x)dx -3 ﬁ:xg(x)dx +

1
c-b

i (oxg (e ar =

—da —a

c
c—-b

fog(x)dx - J’['ng(x)dx (28)

which can be computed using Eq. (26) and

Tr[a*exp( —%)—b*exp( —b2

%[a*exp( 9= b exp( <20+

J,b ) ( ) 0_2 %2 *2
xg(x)dx =
) J/m

(m* + 0" ) (D(b") —D(a”)) (29)
We finally compute
o moxeoar
E(X* | %) = h) (30)
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The numerator is

Juro g = [ gy - -

b ng(x)dx+

Cibfbfg(x)dx—mfl)x3g(x)dx (31)

which can be computed using Eq. (29) and

ji)ﬁg(x)dx = %[(2 +a’ )exp( -

a#Z
2 )_
bzz)] +M[a*exp(—

B
2 )_
prexp( - L 0)+ am(a(bT) —@(a ) ]+

)l =5)]+

m (®(b") ~®(a”))

(2+b" )exp( -

2
M[exp( -4

(32)

The M-step requires maximizing Q (¢ ,4'* ) with re-
spect to ¢y. This can be achieved by differentiating Q (¢,
') with respect to w and ¢, which results in

(q)
Q(lpaw% ) #( _HB((/) +HHTW)
(a) 1
L(‘[;—UL) == + (S o ~2"HBY + W HH'W)
g =

Equating these derivatives to zero and solving for w
and o, we obtain the following unique solution;

W = (HH") " H" (33)

o =
«/’11( Iz:‘l‘al;q) _2(w<q+1>)THB<q> + (W(q”))THHTw(’“”)
(34)

we can obtain the re-
gression weight coefficients w and thus obtain the final
RBF neural network regression model with crisp inputs

When the iteration terminates,

and fuzzy membership output.
3 Simulations

In this section, we validate the performance of

FORBFNN by using a numerical simulation, in which the

behavior of a nonlinear system is defined as

ue(0,10] (35)

X = usinu

To model the situation where response x can only be
imprecisely observed, triangular fuzzy membership func-
tion (see Eq. (24)) is adopted. The core and support of
such kind of fuzzy membership functions are generated
according to the following two-step strategy :

Step 1  Generate the cores x, of fuzzy observations, x,
=f(u,) +&,, where g, ~N(0,5,,. ) -

Step 2 The supports of the fuzzy membership func-
tion %, are defined as [ x, - §,, x, + §,], where §, ~
rand[ 8, ,8,.. |-

In the simulation, four different study cases for devia-
tion §,, i.e., 8, {[0,0.01],[0,1],[0,2],[0,3]}
are considered. Note that too wide range of imprecision is
not considered, because too wide range of imprecision
leads to useless training samples about the given system.
In each study case,
accuracy threshold & = 10 > and maximum node number
R_.=4,5,6,7. In addition, we consider that there are

max

the size of training samples n =21,

not outliers existing in the data sets.
rameter 7 in Eq. (16) can be set to be zero.

To validate the performance, there are 101 testing sam-
ples produced according to

Therefore, the pa-

u,=0.1(i-1), x; = u;sinu; i=1,2,---,101 (36)

In each study case, 100 data sets T (1=1, 2, ..
100) are generated. The FORBFNN model is identified
for each training set 7. To measure the prediction accu-
racy of the identified model on each training set, we reg-
ularly generate the number of testing samples n, from the
input domain according to Eq. (27). The error is compu-
ted as the mean squared difference between the true out-
put x, and model prediction £

_1ly
= n,;(xi

The numerical results are shown in Tab. 1,
graphical results randomly selected from the 100 trials in
each study case are shown in Fig. 2.

MSE" -2 (37)

and four

Tab.1 Approximation and prediction errors ( mean plus or minus one standard deviation) in different ranges of imprecision

Maximum node number R

max

Imprecision Error type 2 5 p 7 Remark
5,c[0.3] Approximation  6.306 1 £2.844 3  4.4915+2.3264 4.6095+2.7221 5.058 1 +£2.4907 c=5
Prediction 3.5328+1.4525 2.4373+1.5127 2.4614+1.6862 2.6252=+1.5467 Over-fitting
5 c[0.2] Approximation ~ 4.137 8 +1.6682 3.6298 +2.1469 3.4485+2.2693 3.3444 +2.1808 o7
Prediction 2.5987+1.0702 2.3646+1.5511 2.1398+1.5918 2.0902 +1.498 4
5,c[0,1] Approximation  3.459 1 +1.1817 2.4370+1.9447 2.4470+1.9144 2.3074+1.6412 7
Prediction 2.4830+0.8839 1.6888+1.4295 1.7301+1.4363 1.5873+1.1295
Approximation ~ 3.3057 +0.0054 0.2651+0.0015 0.2650=+0.0017 0.264 9 x0.001 5
§,€[0,0.01] ¢=5,6,7
Prediction 2.3217+0.0002 0.1979+0.0003 0.1979+0.0004 0.197 9 +0.000 4
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--—— True model
8 —— FORBENN model \*
6 —— Training data \
4
2
)
-2
-4
-6 +
o 1 2 3 4 5 6 7 8 9 10
u
(a)
10
""" True model
8 —— FORBENN model i
6 —— Training data
4
2
® 0
-2
_4t
-6
o 1 2 3 4 5 6 7 8 9 10
u
(b)
L e True model
8 —_ FORBFNN model
6 —»— Training data
4
2
)
-2
-4
¥
-6
o 1 2 3 4 5 6 7 8 9 10
u
(¢)
L True model
J — FORBFNN model
6 —»=— Training data
4
2
=

Fig.2 Four data sets and prediction results randomly selected
from 100 trials for four study cases. (a) §,e[0,3]; (b) 6,€[0,
2];5 (¢) 8;€[0,1]; (d) 8;,€[0,0.01]

Fig. 2 illustrates the prediction results of the FORBFNN
model in different ranges of imprecision. It can be seen

that the predicted curves can approach the true behavior.
The difference between the predicted curves and true be-
havior becomes smaller with the decrease in imprecision.
Especially, such difference approaches zero in the precise
and certain case.

Tab. 1 presents the approximate and prediction accura-
cies when the maximum number of nodes in the hidden
layer R, takes different values in different ranges of im-
precision. They numerically show the performance of the
FORBFNN model. For a given range of imprecision, the
R .. corresponding to the highest approximate accuracy is
determined as the node number without considering over-
fitting. For instance in the first case §, € [0,3 ] in Tab.
1, the highest approximate accuracy appears when R =
5; therefore, the number of nodes in node base is 5,
i.e., c=5. We call a model over-fitting if its approxi-
mate accuracy becomes small whereas its associated pre-
diction accuracy is high, see the case when 8, € [0,3] in
Tab. 1. The over-fitting always occurs in the cases when
high imprecision exists. In this regard, it suggests con-
structing the FORBFNN with small size of node base in
the high imprecision cases. In addition, we can see that
the performance of the FORBFNN can be improved when
the number of nodes in the hidden layer increases to a
limit.

In a word, the FORBFNN can deal with imprecise da-
ta, and its performance is determined by the ranges of im-
precision. The lower the imprecision, the higher the ap-
proximate and predicated accuracies.

4 Conclusion

This paper proposes a fuzzy observations-based RBF
neural network used to deal with problems when the re-
sponse of a system can be represented by fuzzy member-
ship functions. In this approach, the weight coefficients
used to combine the outputs of the nodes in the hidden
layer are identified by the fuzzy EM algorithm, and both
the performance accuracy and the size of node number in
node base (i.e., the complexity of the produced model)
are considered simultaneously. The performance of the
FORBFNN is illustrated by using some simulations.

There are still some further works that need to be stud-
ied for the extensive applications of our proposed meth-
od, such as how to establish fuzzy data from running da-
ta. If such an issue is solved, it can be widely used in en-
gineering practice.
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