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Aerodynamics of flexible wing in bees’ hovering flight
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Abstract: The aerodynamics of 2-dimensional flexible wings in
bees’ normal hovering flight is studied. Four insect flapping
flight coordinate systems, including a global system, a body-
fixed system, a rigid wing-fixed system and a flexible wing-
fixed system, are established to represent the insects’ position,
gesture, wing movement and wing deformation, respectively.
Then the transformations among four coordinate systems are
studied. It is found that the elliptic coordinate system can
improve the computation accuracy and reduce the calculation
complexity in a 2-dimensional rigid wing. The computation
model of a 2-dimensional flexible wing is established, and the
changes of the force, moment, and power are investigated.
According to the computation results, the large lift and drag
peaks at the beginning and end of the stroke can be explained
by the superposition of the rapid translational acceleration, the
fast pitching-up rotation and the Magnus effect; and the small
force and drag peaks can be explained by the convex flow
effect and the concave flow effect. Compared with the
pressure force, pressure moment and translational power, the
viscous force, viscous moment and rotational power are small
and can be ignored.
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umans have long been fascinated with flight through
H the air, and observations of nature fliers’ effortless
defiance of gravity first inspired our dreams of taking to
the air. Nonetheless, the early attempts to use flapping
wings for propulsion failed; consequently,
paid more attention to fixed and rotary wings study and
achieved great success in the past 100 years. However,

researchers

traditional fixed-wing and rotary-wing flight began to fail
as the flow dynamics entered a regime of insect-sized
flights. The small scale air vehicles require different de-
sign ideas compared with the conventional ones. Then re-
searchers turned to micro air vehicle( MAV)design by im-
itating insect flight, and looked forward to producing the
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micro flapping vehicle. But we have less-detailed under-
standing of flight mechanics so far. Previous studies show
that the steady-state mechanism is inadequate to predict
the aerodynamic lift and power requirements of small in-
sects'’. Some new techniques, such as the computational
fluid dynamics ( CFD) method and the unsteady theory,
are required to reveal the mechanism of insect flight.

Previous studies on flapping flight have been undertak-
en from analytical, experimental and computational as-
pects. Sun et al."* investigated lift and power require-
ments for hovering flight in Drosophila virilis using the
computational fluid dynamics method. Wang et al."
compared computational, experimental and quasi-steady
forces in a generic hovering wing undergoing sinusoidal
motion along a horizontal stroke plane. Liu'* addressed
an integrated and rigorous model for the simulation of in-
sect flapping flight. However,
based on idealized rigid wings and they do not consider
the effect of the wings’ flexion during insect hovering
flight. Insects use flapping wings to generate forces to
balance their weight for hovering. Although insect wings
are small and only account for 0.4% to 6.0% of body
mass, they provide enough force for insect flight”'. For
the lift coefficient, the moderate wing flexibility leads to
a15% to 30% increase compared with the rigid wing'”.
To understand the mechanism of insect flight, Tanaka et
al. ®" investigated wing flexibility on lift generation in
hoverfly flight, and they pointed out that the flexible de-
formation should not be ignored.

the above models are

In order to hovering, the flapping wings need to gener-
ate enough lift to support body weight in the vertical di-
rection while maintaining a balance of aerodynamic forces
and moments to stabilize the body, and need to consume
more power compared with forward flight"™
a detailed view of the aerodynamics, control and energet-
ics of the flexible wing in insect normal hovering flight,

the aerodynamics of 2-dimensional flexible wing in bees’

. To provide

hovering flight is studied. Understanding the mechanism
of insect flight will help us to design micro-flapping flight
aircraft.

1 Insect Flapping Flight Coordinate Systems
1.1 Four coordinate systems of flapping flight

To study the movement and deformation of the insect
wings, four coordinate systems are defined as follows'"':

1) A global system (o,x,y,z,) It is equivalent to an
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inertial system.
2) A body-fixed system (o0,x,y,z,)
centroid of an insect, positive x, oriented the insect head,

Its origin is in the

positive z, oriented the wing tip, positive y, oriented ver-
tically upward. Fig. 1(a) shows the angles of pitch 6,
roll ¢, and yaw ¢ with respect to the body-fixed system.

3) A rigid wing-fixed system (o0,x,y,z,) Its origin is
at the root of the insect wings. The wing root is coinci-
ding with the insect centroid, positive x, oriented the
leading edge, positive z, oriented the wing tip, positive
v, oriented vertically upward. Fig. 1(b) shows the posi-
tional angle £, the elevation angle £, and the angle of at-

X000

(a)

tack « with respect to the rigid body-fixed system.

4) A flexible wing-fixed system (o0,x,y,z;) Its origin
is at the centroid of the insect wings, positive x, oriented
the leading edge, positive z, oriented the wing tip, posi-
tive y, oriented vertically upward.

The deformation of the insect wings generally includes
chordwise and spanwise deflections'®, so the chordwise
bending angle § and the spanwise bending angle y are de-
fined. The wing near root and leading edge is simplified
as rigid and the other part is flexible. Fig. 1(c) shows the
chordwise bending angle § and the spanwise bending an-
gle y with respect to the flexible body-fixed system.

Wing tip

(¢)

Fig.1 Definition of insect flapping angles. (a) Body-fixed coordinate System; (b) Rigid wing-fixed coordinate system; (c) Flexible wing-

fixed coordinate system

1.2 Transformation among four coordinate systems

The global system, the body-fixed system, the rigid
wing-fixed system and the flexible wing-fixed system are
used to reveal the insects’ position, gesture, the wings

cosicosh

S, = | singsinycosh — cosgpsing

oj
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movement, and the wings deformation, respectively. To
solve the general problem of insect flight, the coordinate
system transformation is investigated. As shown in Fig.?2
(a), the transformation between the global system and
the body-fixed system can be written as

— sinys
singcosy

cosysing
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cosgsingycosh + singsing  cosgsingsings — singpcosh  CospCosys

(a) (b)

(c)

Fig.2 Transformation among four coordinate systems. (a) Transformation between global system and body-fixed system; (b) Transforma-
tion between body-fixed system and rigid wing-fixed system; (c) Transformation between rigid wing-fixed system and flexible wing-fixed system

As shown in Fig. 2(b), the transformation between the
body-fixed system and the rigid wing-fixed system can be

cosacosy
= | sinwsin{cosa — coswsina
sinwsina + cosmsin/ cosa

S

al®

written as
cos{sina —sin{
coswcosa + sinwsinasing  sinwcos{ (2)
coswsinasin{ — sin@cosa  coswcosy
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As shown in Fig.2(c), the transformation between the
rigid wing-fixed system and the flexible wing-fixed sys-
tem can be written as

cosd sind 0 O

_| - cosysind  cosycos§ siny O (3)
ok sinysin§ - sinycos§ cosy O
-x' -y -7z 1

where K=( -x,, —y,, —z,), and K is a vector pointing
from o, to o,.

1.3 Elliptic coordinate system

Although the above coordinate systems have the versa-
tility, the elliptic coordinate system may be more helpful
in 2-dimensional wing research. The computation of 2-di-
mensional insect hovering showed that a hovering motion
can generate enough lift to support a typical insect
weight'”'. As the cross-section of 2-dimensional wings is
similar to an ellipse, wing chord can be simplified as an
ellipse to facilitate the theoretical analysis and computa-
tion. The movement of the ellipse can be expressed in the
elliptical coordinate. Fig.3 shows the established elliptic

coordinate system.

Fig.3 Established elliptic coordinate system

The conversion between the elliptic coordinate system
and the Cartesian coordinate system is

x = acoshmcosn, y = asinhmsinn 4)

where ( —a, 0) and (a, 0) are two focuses of the el-
lipse; curves of constant m form ellipses, and curves of
constant n form hyperbolae. The dashed ellipse repre-
sents the torsional wing chord and ¢ is the torsion angle.
The center of the ellipse coordinate system coincides
with the center of the wings’ cross-section. The Navier-
Stokes equation and the continuity equation expressed in

the elliptic coordinate the following
07,

system have
forms'

a(j—twh(ﬁu S V)w=vAw, V/Su=0 (5)
where u is the velocity field; w is the vorticity field; v is
the velocity and S is the scaling factor. The mesh points

are naturally clustered around the tips in the elliptical co-
ordinate system. The radius of the computational bounda-
ry can be chosen to be 5 to 10 times the half-chord
length™'. While in the Cartesian coordinate system, this
value is 20 to 50 times the half-chord length, so it can
improve the computational accuracy and reduce the calcu-
lation complexity.

2 Computation Models and Methods

Fig.4(a) shows the forces and position of a rigid wing
in the downstroke phase. During the hovering flight, the
tip angle of the stroke plane is particularly small and the
stroke plane is approximately horizontal. Hovering with a
horizontal stroke plane is termed normal hovering''".
The wing deformation of normal hovering flight can be
represented as Fig. 4 (b). The thick line represents the
wing chord and the filled circle represents the leading
edge. In Fig.4, « is the angle of attack; ¢ is the torsion
angle; F, is the lift and F is the drag. In hovering
flight, F is equal to thrust in the horizontal direction and
F, is equal to the insect weight in the vertical direction.
Insect wings have two forms of movements in one flap-
ping cycle; the wing chord will distort at the beginning
and end stage and translate at the middle stage in the
stroke plane. The translational movement of a wing is
governed by A(t) =A,/2 [cos(2wt/T) + 1], and the
rotational movement is governed by a(t) = w/[4(1 -
sin(2mwe/T)) ], Other wing flexure deformation pa-
rameters are set the same values as those in Ref. [13].
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Fig.4 The generated forces and movement of wings. (a) Rig-
id wings in forward flight; (b) Flexible wings in hovering flight

The computational fluid dynamics problem is defined
under the initial and boundary conditions. The solutions
to the N-S equations require specific boundary conditions
at the solid walls of dynamic flapping wings and the body
as well as at the far-field outside boundary. The computa-
tional domain has a size of 50c x 50c¢, where ¢ is the
length of the wing chord. Extensive tests have been done
to make sure that the domain is large enough to achieve
satisfactory accuracy of the results. The outermost bound-
ary of the computational domain is defined as the pres-
sure-outlet wall. The wing boundary condition satisfies
v,_o, =0 at the initial movement. The fluid velocity at flu-
id-wing boundaries is equal to that of the wing boundary.
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The no-slip condition for viscous fluids states that at the
wing boundary, it satisfies the condition vy, =V,

The second-order up-wind numerical scheme and the
SIMPLEC algorithm are used to solve 2-dimensional in-
compressible Navier-Stokes equations. At each time step,
user-defined functions ( UDFs) are used to control the
wing’s motions and to obtain the aerodynamic perform-
Dynamic mesh techniques are implemented by
using the spring-based smoothing model and the local
remeshing model.

The process to calculate the force, moment and power

ance.

is as follows:

1) The pressure distribution of every face thread is ob-
tained first, and then the pressure force is computed by
looping over all face threads in the domain. The total
force is the cumulative force of each face. In hovering
flight, lift is the component of total force in the vertical
direction, F'; = Fcosa, and drag is the component of total
force in the horizontal direction, F, = Fsina ( see Fig. 4
(b)).

2) The dimensionless moment is calculated as the
product of force and positional vector at the cell center of

the wing, such that M = fF xrdA . Here A is the wing
A

surface area; F' is the aerodynamic force in the unit wing
area; r is the distance vector.

3) The translation power can be written as P, = f F x
A

vdA , and the rotation power can be written as P, = f M
A

x £2dA, where v is the wing velocity and &2 is the angular
velocity. The total mechanical power of the wing is P =
P +P,.

3 Results and Discussion

The lift coefficient and the drag coefficient are defined
as

2F, 2F,
=pU2 ¢’ = =,0U2 c (6)

m

L

where C,, C, are the lift coefficient and the drag coeffi-
cient, respectively; p is the air density; U,, is the average
velocity of the wing chord; ¢ is the wing chord length.
The aerodynamic force acting on the wing is contributed
by the pressure and viscous stress on the wing surface,
and the total force is the sum of pressure force and vis-
cous force. The lift and drag refer to the total lift and to-
tal drag. Fig. 5 describes the computation results of lift
coefficient C; and drag coefficient C,,. Note that the lift
coefficient and the drag coefficient are normalized and re-
presented in the same diagram in order to compare the
variation trend better. The results show that C, and C
have a similar variation trend with Wang’s research".
The small difference may be due to the parameter settings

and wings flexible deformation. The wing is considered
to be rigid in Wang’s research, while the wing is consid-
ered to be flexible in this paper.

-G

_CD

Simulation cycle

Fig.5 Computation results of lift and drag coefficients

The negative lift and drag means that the direction of
lift and drag is opposite to definition. The large lift and
drag peaks at the beginning and the end of the stroke can
be explained by the superposition of the rapid translation-
al acceleration, the fast pitching-up rotation of the wing
and the wing’s rotation. The rotational circulation is
caused by the Magnus effect, which makes the wing
generate an upward force. This effect is similar to a rota-
tional circulation mechanism'"*'. Unlike the rigid wing’s
results'®’ | the small peaks before large peaks in the first
quarter-cycle can be explained by the convex flow
effect. The wings are rigid in the translation process, so
the drag has a steady increase at this stage. Then the
wing has a flexible deformation (see Fig.4(b) @) be-
fore the rotation phase, and the wings area against air-
flow is reduced, so the drag has a slight decrease in this
stage. The small peaks after large peaks in the second
quarter-cycle can be explained by the concave flow
effect, and the wings flexible deformation has not
changed after the rotation phase ( see Fig.4(b)(®), so
the wings area against airflow is increased and the drag
has a slight increase an this stage. A similar theory can
be used to explain the small drag peaks in the next half
flapping cycle.

The average viscous force is probably 1/400 of the
pressure force and the average viscous moment is only
1/775 of the pressure moment in our computation, as
shown in Fig.6(a). The viscous force and moment can
be ignored during the following insects’ normal hovering
flight research. The total force and the total moment can
be represented by the pressure force and the pressure mo-
ment, respectively. The average rotational power is
probably 1/20 of the translational power, as shown in
Fig. 6 (b), so insects will consume more energy for
translational movement than for rotational movement.
The positive power means that the flapping wings do
work on fluid and the movement of wings needs to con-
sume energy. The negative power means that the fluid
This will help the
wing form a convex flow shape and save the energy con-

produces work on flapping wings.

sumption of insect flight.
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Fig. 6 Aerodynamic moment changes and consumed power

during several flapping cycles. (a) Comparison between pressure
moment and viscous moment; (b) Comparison between translational
power and rotational power

4 Conclusion

Four insect flapping flight coordinate systems are estab-
lished to represent the bees’ position, attitude and wings
deformation. Then the computation models of the 2-di-
mensional flexible wing are established, and the force,
moment, and power changes are investigated. According
to the computational results, the large lift and drag peaks
at the beginning and end of the stroke can be explained by
the superposition of the rapid translational acceleration,
the fast pitching-up rotation and the Magnus effect. The
small force and drag peaks can be explained by the con-
vex flow effect and the concave flow effect. The viscous
force, moment and rotational power are small and can be
ignored. In the future research, a lot of work needs to be
done to reveal the flight mechanism, such as numerical
calculation of 3-dimensional flexible wing, quantitative
analysis of force, moment and power. Understanding the
mechanism of insect flight will be a great promotion of
micro-flapping flight design and application.
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