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Abstract: In order to study the sliding characteristics when the
cable structures are connected with other rods, a string of
sliding cable elements ( SCE) consisting of one active three-
node SCE passing through the sliding point and multiple
inactive two-node SCEs is put forward. Based on the updated
Lagrangian formulation, the geometric nonlinear stiffness
matrix of the three-node straight sliding cable element is
deduced. The examples about two-span and three-span
continuous cable studied
effectiveness of the derived SCE. Comparing the cable tension
of SCE with the existing research results, the calculating
The sliding
characteristics should be considered in practical engineering

structures — are to verify the

results show that the error is less than 1%.

because of the obvious difference between the cable tension of
the SCE and that of the cable element without considering
sliding characteristics.
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igh-voltage overhead transmission lines can be ide-
H alized as cable-rod-beam coupling systems'' ™. The
cable element is always used to simulate the transmission
line, and the truss element is always used to simulate the
insulator and the components of the tower. When the
transmission lines are connected with other rods, the slip-
page may occur at a clamp or a joint. Therefore, a new
cable element should be developed to consider the influ-
ence of the sliding characteristics on the mechanical re-
sponse of transmission lines.
Some scholars put forward the analysis method consid-
ering sliding characteristics. Tang and Shen'”' presented a
new finite element model with five-node curved cable ele-

Received 2013-05-25.

Biography: Liu Yun (1981—), male, doctor, lecturer, hhu _ liuyun@
126. com.

Foundation items: The National Natural Science Foundation of China
(No.51308193 ),
20110491342 ), Jiangsu Planned Projects for Postdoctoral Research
Funds (No. 1101018C), the Science and Technology Project of State
Grid Corporation of China (No. SGKJ [2007] 116).

Citation: Liu Yun, Qian Zhendong, Xia Kaiquan. Mechanical analysis

China Postdoctoral Science Foundation ( No.

of transmission lines based on linear sliding cable element[ J] . Journal of
Southeast University (English Edition), 2013, 29(4): 436 — 440. [ doi:
10.3969/j. issn. 1003 —7985.2013. 04.015]

ments using quartic polynomial interpolation. Guo and
Cui' calculated the cable tension on both two sides of the
sliding point by applying different temperature loads re-
presenting either heating or cooling to each side of the
sliding point. Zhang and Dong'” presented an algorithm
for the analysis of the continuous cable in tension struc-
tures based on a two-node catenary cable element. Wei
and Liu'"" developed a numerical method by the finite ele-
ment method (FEM) dealing with the cable-sliding prob-

lem in cable structures. Aufaure et al. "'

! presented the
three-node finite element formulation of a length of cable
passing through a pulley and clamp respectively, i.e. the
expressions of the internal forces and of the stiffness ma-
trix. Nie et al. """ put forward a nonlinear method for cal-
culating the continuous cables sliding at the middle sup-
port. Wei'"" developed an effective numerical method for
the cable sliding problem in cable structures, and a two-
node catenary cable element was built to model the cables
based on the analytical solution of elastic catenary. Mc-
Donald et al. ™' developed a pulley element which can
model a finite length of cable supported somewhere along
its length by a pulley. Zhou et al. "' used the principle of
virtual work and the total Lagrange( TL) formulation to
derive the element internal force vector and the tangent

stiffness matrix. Chen et al. "

presented the multi-node
sliding cable element for the analysis of cable structures
with cables threading through a number of joints and be-
ing able to slide inside them.

In the previous studies, the formulation of the catenary
element used in the group of sliding cables is too compli-
cated to solve in the finite element analysis, and the total
Lagrangian formulation is used to derive the tangent stiff-
ness matrix of the active sliding cable. In this paper, the
slippage between cables and joint structures in the trans-
mission lines is considered. The geometric nonlinear stiff-
ness matrix of the three-node straight sliding cable ele-
ment is deduced based on the updated Lagrangian ( UL)
formulation. Finally, two examples are given to verify
the proposed sliding cable element.

1 Finite Element Formulation of Linear Sliding
Cable Element

Fig.1 shows a string of the sliding cable element
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(SCE) consisting of one active three-node SCE passing
through the sliding point and multiple inactive two-node
SCEs. A special geometrically nonlinear three-node cable
element is developed to model the active sliding cables,
as shown in Fig. 2. Standard geometrically nonlinear two-
node cable elements are used to model the inactive sliding
cables. The primary assumption used in this paper to de-
velop the active sliding cable element is that the strain is
uniform along the entire element. This assumption im-
plies that there is no resistance, such as friction, at the
sliding point. The cross-sectional area of the cable ele-
ment does not vary with loading, and there is the axial
strain in the cable element with no bending moment.
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Sliding point

Inactive SCE Inactive SCE

Active SCE

Y

Fig.1 A group of sliding cables
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Fig.2 An active sliding cable element

Fig. 2 shows a definition sketch of an active sliding ca-
ble element in its initial, current and unknown configura-
tions. The fundamental kinematic assumption of the slid-
ing cable element states that the strain is uniform along
the element; i.e., the strain in both parts is the same at
any time. Applying the principle of virtual work and an

[18]

updated Lagrangian formulation' ™', the incremental virtu-

al work done by the internal force is

1+At

j tS,8™ e, A dL ="MW (1)
L +L,

where g,, is the Green-Lagrange strain; S, is the second
Piola-Kirchhoff stress; and A, is the initial cross section
area of the element, which is assumed to be constant over

the entire element length. In the UL formulation, the in-
tegration is performed over the current configuration. Be-
cause the strain and stress are assumed to be constant
along the element, the integration in Eq. (1) is performed
analytically as

AW ="8,8 Ve Ay (L, + Ly) (2)

where
TS ="+ S, (3)
e, =8 (4)

Note that "**'§, is the second Piola-Kirchhoff stress
is the
Cauchy stress tensor performed over the current configu-
ration. S and ,& are, respectively, the Kirchhoff stress
increment and the Green strain increment performed over

performed over the current configuration; ‘7,

the current configuration.
02 2 A 2 . e
G;,,'G;, and '"VG,, are the initial, current and un-

. . 19
known components of the metric tensor, respectively!”.

OG?I = (L, +Loz)2
‘G, =(L, +L,)*
r+ArGTl — (ll + 12)2

For the three-node sliding cable element, the Green-
Lagrange strain is given by

IG?l _OGi (Ll +L2)2 _(Lm +Loz)2

o€ = ) = 2 (5)

HAIGTI _IG?] _(ll +lz)2 _(Ll +L2)2
2 - 2

(6)

En =
Considering the linearization of the balance equation,

.S,, can be expressed as
S =Dy .8, (7

The second Piola-Kirchhoff stress and the Cauchy stress
are given by

S :Cmugl] _ E.g, (8)
M tGTl (L, +L2)4
and
' C1111(’)511 E:)£11
= = 9
TG T Ly Ly’ @

where E is Young’s modulus. Performing the variation of
Eq. (3) yields

8., =l +1,)(8l, +6l,) (10)

The initial, current and unknown element length are deter-
mined from the respective nodal coordinates (x;, y,, z;) as

l? — (1+A1x3 _ t+A1xi)2 + (1+Aty3 _t+Atyi)2 +

t+ At t+ At 2 .
( Z;) i=1,2

(1)

_—
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L =(x ='x)"+(y, =y +('z, -'z)°  i=12
(12)
Ly, =Cxy = %) +Cyy =97+ ("2, - °2)° i=1,2
(13)

The current nodal coordinates are related to the initial
coordinates (’x,,"y,, z,) and the current nodal displace-
ments (‘u, ‘v, 'w) by

t 0 t t 0 t t 0 t .
X=X+ Uy, Y=YV, = 4w, i=1,2,3
(14)

The unknown nodal coordinates are related to the cur-
rent coordinates ('x,,"y,, 'z

Substituting Eq. (15) into Eq. (11) and performing the
variation, we can obtain

81, :%[Axi(é”mm =8 Mu) + Ay, (8 Vv, =8y +
A, 8wyl =12 (16)
where
T N N
Az, ="z, ="z, Q=12 (17)

Substituting Eq. (16) into Eq. (10),
term can be written as

the virtual strain

;) and the current nodal dis- S,¢,=-(1, +1,)A"sd (18)
placements (HAI u, 1+ At v, 1+A/W) by
where
t+Atxi:txi+t+At o t+Aryi :zyi+t+Arvi
t+AtZi:rZi+r+Arwi i=1,2,3 (15)
AofAn A An An A A Ay An o Ay Ay, Ay A
_{ L L L L L L L L L }
5d= {5 1+Atul 8 r+Alv1 5 1+A1W1 5 t+Atu2 8 1+A1V2 5 t+AtW2 5 r+Aru3 6 t+AtV3 6 r+Arw3 }T
The incremental virtual work given by Eq. (2) can be 6 0 -0,
rewritten as %: 0, -0, (25)
d
SW, =F'sd = — (B, +B,) PA"sd (19) 0, +6-,
and the internal force vector is %—(5 =—-A" (26)
F,=-(B8, +B,)®A (20) and
where AC-P  AxAy, AxAz
t 1 2 2
Ee,A E L +L = Ay, -1 Ay.A =1,2
B, = 2 03’ B, = o&n (L 42)’ D=1 +1, 0, l? Vi =& YA, l
(L, +L,) (L, +Ly) AZ —l, s
(27)

Note that the 8 term is constant. Taking the partial de-
rivative of the internal force with respect to the nodal dis-
placement yields the following element tangent stiffness

matrix:
_LI?I_(')[ _(ﬁl +IBO)¢A] _a( —B]@A) +a( _ﬁO@A)
(S ad = ad = ad ad
(21)
where
a( -3, PA) _ EA, aré.“(p-'- ds%
od - (LI +L2)3( od € E)d)
(22)
a( dA) d A
57,01 BO(AL+(ng) (23)
and
d,6,D
%= —[e, +(1, +1,)*1A" (24)

It should be noted that the element equations, as writ-
ten, are singular when the slider node coincides exactly
with either of the end nodes (/, =0). The element equa-
tions for these limit cases can be derived analytically.

2 Verification Problems

A two-span continuous cable structure and a three-span
continuous cable structure are implemented to verify the
sliding cable element deduced above.

2.1 Example 1

The initial configuration, without gravity, is the un-
stressed straight line OP, P, dotted in Fig.3. O represents
the anchorage of the cable on a dead end. P, is the first
pulley fixed at the foot of an insulator chain CP,. P, is
the second pulley fixed on the other dead end. O, P, and
We seek the profile adopted by the cable
OP, P, when its unstretched length is given. The calcula-
tion parameters of this example are defined as follows:

P, are level.
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OP,=8m; P,P,=12m; q,=0.2kN/m; E=1.7 x10’
MPa; A, =6.74 x 10 “m’. ( E is the modulus of elastic-
ity; A, is the cross sectional area; ¢, is the cable weight
per unit length. )

z C
(S o |0 P,
W

Fig. 3
stretched length

Equilibrium of a two-span cable with a given un-

Tab. 1 lists the tension of the two kinds of cable struc-
tures simulated by the linear space cable element without
considering sliding and the linear space cable element
considering sliding. As for the linear space cable ele-
ment, the elastic modulus is modified and an initial strain
is applied so that the geometrical non-linearity of the
structure should be considered. The tension of the cable
structure simulated by the linear space cable element con-
sidering sliding is observed to correlate well with the re-
sults in Ref. [13]. As shown in Tab. 2, the differences
are all within 1%, which indicates the effectiveness and
validity of the model adopted in this study. The tension
of the cable structure OP, simulated by the linear space
cable element considering sliding is greater than that of
the simulated by the linear space cable element without
considering sliding.

Tab.1 Cable tension of example 1 kN
Horizontal Left Right
Cable element Span X . i
tension tension tension
Linear space cable element OP;  5.9113  5.9742 5.9763
without considering sliding P, P, 9.7315 9.8043 9.8052
Linear space cable element OP;  8.2613 8.2945 8.3063
considering sliding PP, 8.2016 8.2873 8.2896
Tab.2 Cable tension in Ref. [13] kN
Horizontal Left Right
Cable element Span . . .
tension tension tension
Cable element without OP;  5.9413 5.9952  5.9953
considering sliding PP, 9.7515 9.8253 9.8255
Cable element OP, 8.3102 8.3487 8.3488
considering sliding PP, 8.2616 8.3488 8.3490

2.2 Example 2

A three-span continuous cable structure with non-uni-
form height supports is applied to verify the element, as
shown in Fig. 4. The calculation parameters of this exam-
ple are defined as follows: g, =0.2 kN/m; E=1.7 x 10’
MPa; A, =6.74 x 10 “m’. The unstressed lengths of
each span are 8. 26, 12.52, and 16. 64 m, respectively.
Nodes 2 and 3 are defined as sliding nodes. The tension
of the linear sliding cable element is very close to that in
Ref. [13] as shown in Tab. 3, which further proves the
correctness of the proposed element in this paper.

w
3.6 3.5°2

Fig.4 A three-span unequal height support continuous cable
(unit: m)

Tab.3 Cable tension of example 2

Cable element  Span Hor.izontal Left tension/ Right tension/
tension/kN kN kN

Cable element 12 7.0175 7.479 4 7.079 6
considering sliding 23 6.3500 7.079 6 6.3798
in Ref. [13] 34 5.6490 6.3798 5. 660 3
Linear space cable 12 7.014 55 7.478 66 7.098 77
element considering 23 6.364 34 7. 168 55 6.236 77
sliding 34 5.68992 6. 368 55 5.567 76

3 Conclusions

1) The three-node linear sliding cable element is put
forward in this paper to consider the slippage in the trans-
mission line structures.

2) The deduced linear sliding cable element is correct
and can be used in the analysis of the practical transmis-
sion lines structures without considering additional
effects, such as friction.

3) Because there is a large difference between the ten-
sion of the sliding cable element and that of the cable ele-
ment without considering sliding, the sliding characteris-

tics should be considered in practical engineering.
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