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Abstract: To investigate the effects of various random factors
on the preventive maintenance (PM) decision-making of one
type of two-unit series system, an optimal quasi-periodic PM
policy is introduced. Assume that PM is perfect for unit 1 and
only mechanical service for unit 2 in the model. PM activity is
randomly performed according to a dynamic PM plan
distributed in each implementation period. A replacement is
determined based on the competing results of unplanned and
planned replacements. The unplanned replacement is trigged
by a -catastrophic failure of unit 2, and the planned
replacement is executed when the PM number reaches the
threshold N. Through modeling and analysis, a solution
algorithm for an optimal implementation period and the PM
number is given, and optimal process and parametric
sensitivity are provided by a numerical example. Results
show that the implementation period should be decreased as
soon as possible under the condition of meeting the needs of
practice,
decrease the long-run cost rate.
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As one of some major maintenance policies, preven-
tive maintenance (PM) policy is widely used to re-
duce downtime and breakdown risk in areas such as in-
dustry, military, health and the environment. As such,
the effective implementation of PM policies has been ex-
tensively studied'"’. Most research on PM models is con-
cerned with the optimal maintenance policies for a ma-
chine or a mono-unit systemm . In contrast, the PM mod-
els of two-unit systems have received less attention, and
many of these existing works focused on redundant sys-
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tems or condition-based maintenance™ . However,
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one type of two-unit series system is broadly existent in
practice, in which the lifetime of unit 1 (U,) is always
stochastically much smaller than that of unit 2 (U,), and
PM for U, is nearly perfect while for U, is only mechani-
cal service and the system will be replaced if a catastroph-
ic failure of U, occurs, for example, a cylinder and its
cylinder liner, a nozzle matching parts of a diesel engine,
plunger matching parts, PM
plans of the system are often modified by some random
factors, such as production task, the transport cycle of a

and so on. Meanwhile,

locomotive, which make the PM intervals become a limit-
ed stochastic value rather than a fixed value.

Various approaches have been developed to optimize
the PM policy'”. Most of them ignore the influence of
random factors on PM policy, and thus regard that the
maintenance period is a fixed value. Actually, it should
be a limited random value in practice because of random
factors that make the maintenance actions unable to be
performed as soon as a planned PM period is reached.
Two typical examples of these cases are PM on some Chi-
nese diesel locomotives being 2 300 to 2 600 km'” and on
some Japanese planes for 12 to 18 months'®'. Only a few
of them discussed the maintenance optimization for a sys-
tem with a stochastic PM interval considering a job cycle

9-11 9 .
. Sheu et al." examined a

or a failure occurrence'
generalized age replacement policy. In Ref. [9], if a unit
fails at age y < ¢, it is subject to a perfect repair with p(y)
or undergoes a minimal repair with probability g(y) =1 -
p(y); otherwise, the unit is replaced when the first fail-
ure after ¢ occurs or the total operating time reaches age T
(0 <t<T), whichever occurs first. Castro et al. """
lyzed a maintenance policy for a repairable system with

delay repairs. In their research, if the system fails in [O,

ana-

T"], then it is repaired, whereas if it fails in (7", T],
the repair is not performed; the system is replaced when
the non-repairable failures reach N over (T°, T].
Chen'"" considered an age replacement policy for a sys-
tem, which can continuously service for multiple jobs
with random working times, and can undergo minimal re-
pairs upon failures. The planned replacement is postponed
at the first completion of the working time or when a job
incurs some damage to the system over a planned time 7.
In this model, the PM actions are delayed and determined
by the job cycles.

In the above mentioned research, the maintenance plan
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is modified by failures or the working cycle of a job, and
yet it should be jointly affected by some random external
and internal factors in a finite time period in practical.
These random factors may result in a modification of the
preconcerted PM period in [T —w,, T +w,], where T is
a planned PM period and w, and w, are constant given by
engineers. For ease of research, herein set 7 — w, as T
and w, +w, = W. Consequently, the dynamic PM sched-
ule randomly distributes within [ 7, 7 + W]. Under this
condition, the PM policy is different from the general pe-
riodic PM policy, and thus it is termed as a quasi-periodic
PM policy in this paper. In our recent study'”, a quasi-
periodic replacement policy for a mono-unit system con-
sidering the modifications of replacement plans is dis-
cussed. By comparison, the quasi-periodic PM for a two-
unit series system is widely used in most real cases, al-
though its optimization is more complex. Based on these
considerations, an optimal quasi-periodic PM policy for
the two-unit series system is introduced in this paper.

1 Model Description

For a quasi-periodic PM policy, a scheduled PM plan
and a dynamic PM plan are presented. The scheduled PM
plan is a long-term plan and is predetermined without
considering the provisional effects of some random fac-
tors. According to the schedule plan, the system is pre-
ventively maintained at kT (k=1,2, ..., N-1) and re-
placed at NT. Nevertheless, the dynamic PM plan is a
short-term plan considering the effect of some provisional
external factors, in which the first (N —1) PM interval is
divided into a planned PM period and an implementation
period. The length of the planned PM period is a fixed
value and made by the scheduled PM plan, while the
length of the implementation period is given by engineers’
experience considering some practical needs.

The quasi-periodic PM policy for a series system com-
prised of two units (denoted as U, and U,) is considered.
The lifetimes of U, and U, are random variables ( marked
as ¢, and ¢,) with distribution function F* (¢) (i=1,2),
respectively, and it is assumed that ¢/, is stochastically
smaller than £,. U, is assumed to be repairable and it un-
dergoes minimal repair at failures. Thus, U, failures oc-
cur according to a non-homogeneous Poisson process with
intensity rate A" (7).

Assume that failures of U, are minor failures which can
be removed by minimal repair at a cost of C.,”. A failure
of U, that occurs in the i-th PM interval is either a minor
one with probability p, or a catastrophic one with proba-
bility g, =1 — p,, where 0 <g, <1 and g, is non-decrea-
sing in i. Herein, minor and catastrophic failures of U,
occurring in (0, #] constitute a non-homogeneous Poisson
process with intensity rate p,i'”(t) and ¢qh'” (1),
respectively. Minor failures of U, can be rectified by
minimal repairs at a cost of C'”’

m °

and catastrophic failures

can be removed by an unplanned replacement. Let A" (1)
denote the hazard rate function and H (¢) = f RO be
0

the mean value function of U,(i=1,2). Thus, the mean
minimal repair cost of U,(i =1,2) in [0, #) can be written
as

AV (1) = c‘n?fh“’(u)du =CVHY () (1)

PM to U, is perfect and to U, is only mechanical serv-
ice with a cost of C,(including the PM cost of U, and the
mechanical service cost of U,), and it often involves lu-
bricating, adjusting load carried to the mating parts,
cleaning the jam and rust, etc. Ref. [13] presented that
maintenance service can only improve the extrinsic state
of the system, and the hazard rate of a unit after the (i —

i-1

1) -th mechanical service is h,(t) = 2 h(x;) +h(t) . In

j=0
this model, x,is a random variable over [T, T + W], and
thus it is difficult to compute expected maintenance cost
since h,(t) is a random function. Herein we set a,(7) =

i-1

ZE[h(xj)] = (i = 1)E[h(x;)] , which is the initial

hazard rate value just at the beginning of the (i — 1)-th
PM. Thus, the reliability of a unit after the (i — 1)-th
mechanical service in [0, t) becomes

RP (1) = exp( = [ h(uydu ~a,(7)1)

A replacement of the system contains two cases:
planned and unplanned activities.
when there are no catastrophic failures in each PM inter-
val and when the PM number reaches the threshold N de-
termined by the PM plan. The replacement cycle is
shown in Fig. 1, where the first (N - 1)-th PM actions
are executed at the time #,(i =1,2, ..., N - 1) following
dynamic PM plans, and a planned replacement is per-
formed at ¢,(t, —t,_, =T, or Y ,>T).

The former occurs

| Y |

(¢ | S * -

NS b S x T
ty+T Y.&,N

Fig.1 Planned replacement

The later is trigged by a catastrophic failure of U,. The
replacement cycle is shown in Fig.2, where the first (i —
1)-th PM actions are executed at the time ¢, , (i =1, 2,
..., N) according to the dynamic PM plans (0 <Y< W).
In Fig. 2(a), an unplanned replacement is performed at ¢
(0<i<N), and Fig.2(b) shows the case when i =N. A
replacement of the system brings a cost of C, (including
the replacement cost of U, and U,, C,>C,).

Although there are some random factors affecting the
PM activities, they may be forecasted in a relative short
implementation period in practice. Thus, the system can
be completely arranged to be preventively maintained
during each implementation period . According to this fact,
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Fig.2 Unplanned replacement

we assume that the occurring time of a dynamic PM plan,
Y., is a random variable and follows the uniform distri-
bution with a probability density function 1/W in each
implementation period.

According to the above maintenance description, three
model assumptions are given as below:

1) Failures of U, and U, are independent. All failures
can be instantly detected and repaired.

2) The hazard rate function of U, and U, are continu-
After a

replacement, the system can be restored to “as good as

ous, positive, concave and non-decreasing in f.
new” state.

3) All minimal repair, PM, and replacement time are
negligible.

2 Maintenance Optimization

A replacement cycle is defined as a time interval be-
tween an installation of the system and the first replace-
ment or between two consecutive replacements. Let Y and
C denote the length of a renewal cycle and the operational
cost over a replacement cycle, respectively. Thus, {7,
C} constitutes a renewal reward process. If C(t) denotes

k-1

the operational cost over the time interval [0, #), then we
have
C(y _E[C]
g(T, N) —1 r TEY] (2)

where E[ C] and E[ Y] denote the s-expected maintenance
cost and the s-expected renewal cycle,
unplanned replacement may occur in each PM period or
ahead of the dynamic PMs in each implementation period
if y,, <T+y,, where y, , denotes an occurring time of a
catastrophic failure and y  denotes the scheduled time of
the dynamic PM plan in the i-th PM interval. Then, the
length of the renewal cycle Y can be described as

respectively. An

N-1 k-1
— (2)
Y = 2 {I(T+y“‘<y11, s Ty <Y Y3 <T4ye ) ( Z X; +y ) +
k=1
N-1
(2)
I{Tﬂx‘ < e Ty <Y v <T) ( X, +y, N)
s
N-1
I(T+y\“ <Y T <V Vifi>T)( X; + T) } (3)
i=0

where x; is the length of the j-th PM interval; [,(Z) is an
indicator function of set B, i.e.,

1 ZeB
0 otherwise

1,(2) ={

Let Af,”(t) and Af?)(t) denote the mean minimal re-
pair cost of U, and U, over [0, #) in the i-th PM interval
and K, =C\/C?,

m

that can be stated using Eq. (1),
=C/CY, K,=C,/Cy. Then,
of a replacement cycle can be described as

the maintenance cost R

N-1
c=c ; {I(T+,\'M<)'f:,'v----T+,\'“,y <y <T.,) ( D (K H (x) +p(a(Dx; + H” (x)) +K) +

=0

k-1
K, H(l)(ym) +pa,_ 1(T)yi211 +H(2)(y(2))) +K, ) +I(T+y\f,<,\'il.‘y---vTﬂ'w.v,.<,\‘12L,pyﬁ:‘i<7) ( Z(K[“H“)()Cj) +

=0

Pa(Dx, + HY (1)) +K) + K,H G +py(ay (D0 +HY(50) +K, ) +

k-1

Ly o0 Ty <) ( 2 (K,H"(x) +p(a(T)x; + H” (x)) +K,) +K,H"(T) +

i=0

Pila(DT +H?(D) +K, ) |

Let f”(t) denote the pdf of U,(i=1,2) failures. Fur-
thermore, according to Egs. (3) and (4), the expected

W T+u

E[Y] =

(4)

renewal cycle and the maintenance cost can be described
as

VLT LT L (e ) I ot

W J f Jﬂ ) f J ( ZX +y(2) ) Hﬂz)(yl)dxldyl...defldnyldyNdu +
f f f’]“'f f(ZX» +T)Hﬁ”w,)dxldy,-~-def,dyN,1dyN} (5)

W .T+u

E[C] —C’){ZW’kff f f j f(Z(KH“)(x) +pa, (Tx, +H”(x)) +C,) +

KH" (y(Z)) +pa,_ 1(T)Y§211 +H(2)(y<2))) +C, ) Hﬁ2>(yl)dxldyl"'dxk—ldxk—]dykdu +
11
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T 4+ 3 +o oy N-I
W"NJ f f J f S (KH"(x) +p(a,,x +H>(x)) +C,) +KH" (y% +pya,,(T)y> +
0 T T T T

k=1

N +o +0 Mot +o 3 N-1
HY(30) + ) TTA” G dndy, o dvy oy dyy + W [ [0 2 [0 ] 3 (K () +
p(a_(Tx, + H(x)) +C,) + KH"(T) +py(ay (DT +H" (1)) +
k

C) T1/7 (v dr,dy, o,y dx, dy, - dy, |
=1

Submitting Eqgs. (5) and (6) into Eq. (2), we can ob-
tain the long-run cost rate function g(7, N). In general,
in order to obtain a unique solution 7° and N by mini-
mizing Eq. (2) with the analytical method, we need to
compute the second derivative and the second-order
difference of M(T, N), P(T, N) and S(T, N) with re-
gard to 7 and N in Eq. (2); however it is difficult to
compute them due to their complexity. As a practical ap-
plication, it is unnecessary to determine a much more
precise solution, while a feasible solution is acceptable by
a simple method with an allowable deviation. Based on
these considerations, the Hooke-Jeeves method is used in
this model, which can be applied almost immediately to
many nonlinear optimization problems*. The detailed
steps of the Hooke-Jeeves method can be seen in Ref. [14].

N-1 i-1

£ = Y 1P ([w2;a + G -n7)

i=1

N-1 i-1

g =c{y

i=1

(6)

3 Special Cases

According to the proposed model, there are three spe-
cial cases with different W and p,. The brief explanation
and the long run expected per unit time are given for each
case.

1) When W=0, p,#1, and N>1

In this case, the system is the same as presented in sec-
tion 1, and the difference between the PM policy and the
proposed policy is that the PM period is a fixed value T.
The mean cost rate equation is shown as

(T, N) =% 7

where

TE ([ Fama sov-n7)

i-1

TTFD ([ £V KH ) +pHY () +pa, iy + 3 (KH (D) +pHY (D) +

pa (DT +K) ) + TTFD ([ FAD KA () + 0% (3) +pyay (D) dy +

N-1

S (K H'(T) +pH(T) +pa, (DT +K,) )} +C

2) When W=0, p,=1, and N>1
This model is a special case of the case 1 with p, =1,
in which failures of U, only include minor failures. Peri-

Co{ Y (K H"(T) +pH?(T) +pa, (DD }+ (N -1DC, +C,

odic PM for U, is mechanical service and for U, is per-
fect. A replacement is performed when the PM number
reaches the threshold N. The mean cost rate equation is

E[C]
(T,N) =
§ ELY]
3) When W##0, p,=1, and N>1
In this case, a quasi-periodic PM policy is executed for
one type of the two-unit system. Failures of the system
are minor failures. Maintenance service for U, and a per-

_ElC] _
g(T,N) = E[1]

N-1 14w
C("12>{2,L (K,H"(y) +H®(y) +a_(Dy)dy +K,H" (1) +a,,(DT}+ (N -DC, +C,

NT (8)

fect PM for U, are stochastically performed in the imple-
mentation period. A replacement is performed when the
PM number reaches the threshold N.
equation is described as

The mean cost rate

NT +0.5(N -1)W

4 Numerical Example

In this section, the procedures and features of the mod-
el are illustrated using the following numerical examples.
Given that the lifetime distributions of U, and U, follow
the Weibull distribution with cumulative distribution func-

(9)

tions R" (1) =e ® and R® (1) =e ™", respectively.
Let W=0.3, a=0.1, £=0.05, B8=0.8, x,=1, C =
2, K,=0.25, K,=0.6, K, =3, r=0.7, and y =0.75,
i=1,2,...,N.

Eq. (2) is computed in Matlab 2010b using the Hooke-
Jeeves algorithms described above. We obtain the optimal
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T° =1.48, N" =6, C,, =5.6064, and E[Y] =5. 648.
That is, the PM activities are stochastically performed in
1. 78].

the time interval [ 1. 48, The mean cost rate

C(N, T) is shown in Fig. 3.

C(N.T)
W
Suo aS X33

—_

Fig.3 Three-dimensional plot of (C, T, N)

In order to present the sensitivity of the maintenance
and failure parameters to the mean cost rate, some numer-
ical examples are given. Tabs. 1 and 2 exhibit the change
tendency of 7", N* and C, , with different parameters
K,, K, and W. As W=0.3 and 0.5, the optimal results
are shown in Tab. 1, respectively.

Tab.1 Optimal results with K, =0.6,r=0.7

w K. 17" N* Cul| W K T N* Cuy
3 1.48 6 5.664 3 1.40 6 5.671
0.3 4 1.63 7 6.0070.5 4 1.56 7 6.016
5 1.78 7 6.334 5 1.70 7  6.341

From Tab. 1 it can be found that T*, N and C,, ob-
viously increase with the increase of K, under a given K,
while T* decreases and C,,, keeps a slow growth trend
with the increase of W under a given K, and K. The opti-
mal N* has no obvious change with different W because it
is mainly determined by C,.

Tab.2 shows that T, N* and C,, also increase with
the increase of K, under a given K, while 7" and N~ de-
crease and C,,, increases slowly with the increase of W
under a given K, and K.

Tab.2 Optimal results with K, =4,r=0.7

w K, 1" N* Cu|| W K, T N* Cuyy
0.4 1.50 6 5.877 0.4 1.40 6 5.886
0.3 0.5 1.59 7 5.944|0.5 0.5 1.48 6 5.952
0.6 1.63 7 6.007 0.6 1.56 7 6.016

When W =0, the proposed model is the general model
described as the special case 1, of which the mean cost
rate is given as Eq. (7). Assuming that C” =2, K =
0.25, K,=0.6, K, =5, a,=0.75(i -1), and W=0.38,
the failure parameters are the same as those of the numeri-
cal example. It can be found that the optimal N* =7 in

the two models, and C_, in the proposed model is 6. 34

and in the general model is 6. 22. Their difference is
about 2% . According to the optimal results of Tab. 1,
with the increase of W, the minimal mean cost rate also

increases, and thus the proposed policy can be replaced

by the special case 1 with a lesser W, otherwise the pro-
posed model should be given great attention when W is
relatively great.

5 Conclusion

In this paper, a quasi-periodic PM policy for one type
of two-unit series system considering the influence of
some random factors is proposed. Based on our analysis
and the examples above, the following conclusions are
obtained:

1) The optimal T° and N* can be obtained although
the model is complex, and the method used in this paper
can also be extended to some special cases proposed
above.

2) The increase in the length of the implementation pe-
riod can cause an increase in the mean cost rate and a de-
crease in the mean operational time, and thus the choice
of W should be decreased as soon as possible under the
condition of meeting the requirements of practice.

3) The policy proposed in this paper is more conven-
ient for production. It can be replaced by the general PM
policy ( the special case 3) for a lesser W, while the
difference between the proposed policy and the general
PM policy should not be ignored if W is relatively grea-
ter.
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