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Multiple solutions and fermion mass effect in QED,
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Abstract: Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to
be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to
Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED;) to the
Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi
energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap;
beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be
concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic,
pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.
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owadays, it is widely accepted that quantum chromodynamics (QCD) in 3 + 1 dimensions is a basic theory for

hadron physics. Especially in high energy regions, the theoretical results of QCD coincide with the corresponding
hadron experiment. However, QCD is very difficult to deal with in the low-energy region because here the nonpertur-
bative effects cannot be ignored. In addition, since the full propagators including high-order corrections contain all the
physical information about QCD, the theoretical results depend on the form of the propagators. Up to now, the investi-
gation of the propagators in low energy is still a challenging domain in field theory. Using the Lorenz analysis, we
write the inverse quark propagator as

S, (m,p) =iy - pA,(m,p*) +B,(m, p’)

where A (m, p) is the vector part and B_(m, p’) is the scaler part. As is well known, there are two solutions to the
Dyson-Schwinger equation (DSE) for the quark propagator, i.e. the Numbu-Goldstone (NG) solution and the Wigner
(WN) solution. In chiral limit, the NG solution corresponds to the chirally broken phase while the WN solution corre-
sponds to the chirally symmetric phase. One accepts that the NG solution is the solution realized in the real world. So
the investigation of the NG solution is an interesting problem.

In principle, we should solve the DSEs for the full quark and gluon propagators to study those problems, but it is
very difficult to do even though we adopt the rainbow approximation. However, we can use a nonperturbative model in

U3 This model is considered with four-compo-

quantum electrodynamics in 2 +1 dimensions ( QED,) to study them
nent spinors and is chirally symmetric in the absence of a bare fermion mass term, .

QED,; as a field-theoretical model has been extensively studied in recent years. It has many features similar to quan-
tum chromdynamics (QCD) in 3 + 1 dimensions. This is because QED, is known to have a phase where the initial
chiral symmetry of the theory is spontaneously broken and it is also known that the fermions are confined in this phase.
Moreover, QED, is superrenormalizable, so it is not plagued with the ultraviolet divergences which are present in
QED,. These are the basic reasons why QED, is regarded as an interesting toy model. It is far more simple in theoreti-
cal structure to study color confinement and dynamical chiral symmetry breaking(DCSB)'*” by QED, than by QCD.
Therefore, we can use the DSEs for the fermion and photon propagators in QED, to investigate our problems.

1 Dyson-Schwinger Equation for Fermion Propagator

The Lagrangian of QED, in a general covariant gauge in the Euclidean space, ignoring the issues discussed in Ref.

[8], can be written as
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L:J/(a+ieA—m);[;+%Ffw+?(aA) (1)
where the 4 x 1 spinor ¢ is the fermion field. In chiral limit, m =0; i.e., this Lagrangian is chiral symmetric. But the
broken symmetry makes the fermion gain a nonzero mass due to the nonperturbative effect. Then the chiral phase tran-
sition occurs. The order parameter is trivially defined as

J d'p 4B(p’)
=Tr S X = O = 2
W =TS =01 = [ e B *
where A( pz) , B( pz) are obtained in the following. The infrared value of B( pz) is also considered as the order parame-
ter. At m50, the last definition should be changedm
Generally, the fermion propagator with nonzero mass can be divided into two parts, the massless part and the mass
part. We suppose that the inverse fermion propagator is analytic about fermion mass.

aS~'(m, p)

P m ... (3)

m=0

S (mp)=S""(p) +

At m—0, the high-order terms can be ignored. Based on the Lorentz analysis, the mass term in the last function is
written as

38~ (m, p)

=iy - pC(p’) +D(p*) (4
om

m =0
We aim to obtain the involved four functions, A, B, C, D. The functions can be obtained by the application of the

Dyson-schwinger ( DS) equation for the fermion propagator. In chiral limit, the full inverse fermion propagator and the
full photon propagator satisfy the following DS equation

S =5 + [ ey st rm 0p,m -0 (5)

(2m)
where S, ' (p) is the bare inverse propagator for the massless fermion; I, (p, k) is the full fermion-photon vertex. From
S (p) = iy - PA(p*) +B(p*) and Eq. (5), we obtain the equation satisfied by A(p) and B(p?),

3

2 1 d'k .
A(p7) =1 —EJWTY[I(Y *p)y,S(k) I, (p, k)D,(p —k)] (6)
2 ’k
B(p") = (z_n_)zTr[YpS(k)FV(P, kD, (p -k)] (7)

where the notation Tr denotes trace over the Dirac indices. If the coupled functions have nontrivial solutions (the NG
solution, B(p®) #0), then the original massless fermion will acquire nonzero mass and chiral symmetry is broken
spontaneously.

In addition, the DS equation satisfied by the photon vacuum polarization tensor can be written as

3

d'k
1I,(q) = f(z ¥ ST S(k)y,S(q + k) I',(p, k) (q +k k)] (8)
Using the relationship between the vacuum polarization I7(g°) and IT p,,(q ),
11,9 =(4’5,, -q,9,)11(q") 9

we can obtain an equation for I7(¢°) which has ultraviolet divergence. Fortunately, it is present only in the longitudi-
nal part. One can remove this divergence by applying the projection operator

P, =5,-32% (10)
q

and obtain a finite vacuum polarization. However, the full vertex is unknown. Although several works have attempted
to solve it """, none of them have turned up trumps. Following some previous works'""™ | we choose the first part in
the BC vertex,

I,(p. ) = TAG) +AK) 1, (11)

One argues that this tenser destroys Ward-Takahashi identity( WTI), whereas self-consistent investigation ( more de-
tails can be found in Ref. [8]) shows that numerical results of the DSE for the fermion propagator obtained by adopting
this vertex are almost equivalent to those by the application of BC and CP vertices'”'. Inspired by this, we choose the
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ansatze.

Finally, we have to choose a gauge. Since the Landau gauge is the most convenient and commonly used gauge, we
use it. Using the rainbow approximation for the full vertex, the coupled DS equations for the fermion propagator and
photon vacuum polarization reduce to the following form,

A =1+ &'k AK)[AP) +AG) 1 (pg) (kq)/q’ (12)
Pl @em)’ FIA)E + B ()11 + ()]
B =f &’k [A(p®) +A(K)]1B(K) (13)
Qm® FIAK)YE +B ()11 +1I1(¢")]

(14)

- d'k_AG)AP)[AP) +AK)] 2K —4(kq) ~6(kq)*/q’
@2m’  AUE +B) A (PP’ +B(p)
where p =¢q +k.
The next step is to obtain mass functions C(p*) and D(p*). In order to obtain the two functions, we start from prop-
agators with massive fermion, where we will meet I" (m;p, k). Since the Lagrangian of QED, is translation invariant,
the WTI remains. We write the identity at small mass,

(p-0),I,(m;p, k) =S"(p) =S~ (k) +m[I(p,0) = I'(k,0)] (15)
Based on the freeness of kinematic singularities, the vertex is given as
I',(m;p. k) =I(p, k) +mI") (p, k) (16)

The structure of the second part (I"') should be the same as the BC vertex. One can obtain I"" if he only displaces A,
B in the BC vertex as C, D. Following the same approximation in chiral limit, we also choose the first part in I"(p,
k), and the ansatze for the full vertex in the DS equation for the massive fermion propagator can be written as

A(p*) +A(K C(p*) +C(K
Pimp b = [AED A |, €Y +CEY ), (7
The corresponding boson propagator in Landau gauge can be written as
5,-44/9
Dpu( m, q) — pv qpqy q ( 18)

g1 +H(m,q")]

Based on the same idea for the fermion propagator, we also express this propagator as O(m'),

aD, (m, q) 5,-494/9 oll(m q°) ‘ H(q)
D (m,q)=D b2 =D e el : =D -D
e D =0 ] B T, T SO O D ™
where
’ 2 aH(mi q2)
_ 19
() =220 (19)
Substituting Egs. (4) and (5) into the DS equation for the fermion propagator, we can obtain
-1 -1 d3k
S (mp) = S;"(m p) +f(2 [,S(m K I (p KD, (m. q) (20)
and then obtain
y 98~ (m, p) e 38, (m, p) aS(m, k)
St + S =) e T +j(2 )m,[S(k) S m:Om]X
A(p®) +A(K) C(p*) +C(K) aD,,(m, q)
] em S ]y [ b, () + S L m] (21)

From the DS equation of the fermion propagator at m0, ignoring the high order of mass O(m”), we can obtain the
linear part of fermion mass as follows:

iy« pC(P’ S M o @
iy - pCP) + D) =1 =[5y, SR [r.ou0 e
Ik 9S(m, k) A(PY) +A(K) C(p*) +C(K)
e A T I B ]””Df’”(”) +J(2w)37ﬂ5(k)[ S LU

The functions of C and D are obtained as
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) =1 by, R | [ A

SO [APLAO ]y p () IO sy s [y b ) 23)

AP +A(K) ')
W =4 f(2 )Tr{m/ Py, St [SP2FEE gD, (0) 7 s
aS(m, k)

(iy - p)yﬂS(k)[M]%D,w(q) - (iy*p)y, om

(A #AED ]y b )} 2

m=0

And Boson polarization is also obtained in this approximation.

Mon, ¢y =11 + D = 1) +1(q)m =
_N 9,4, a'k
Zqz(s,,y - )j(2 THy,SOn ) (R S(m.p) ) =
_N qpqy d’'k aS(m, k)
zqz(apy -3 )f(2 e[ + BURE ] ]
A(p) 2+A(k> + o €2 +C(k)]%[5(p) +(aS(m,p) m]}
oy - - N(s 44\ dk A(p®) +A(K) aS(m, p)
(g = Zqz(sw 3 )j(z )Tr{ Sk | : . =0 s
YPS(")[W]%S(M +7, as(a";; 2 ) [A(p ) ;A(k )]%S(p)} (25)
According to Egs. (20) to (24) and using the identity
D) _ (i, p) B—LLD g, p) (26)

we obtain the coupled equations for C(p*), D(p*), IT'(q*),

cy =L d3k3{A<k2>[[C(p2) +CUH I +1I(q")] - IT'(¢)[A(PY) +AK)]]1(pg) (kq) _
(2m) [A*(K)K +B*(K)14'[1 +II(¢)]1°
(A +AG)] [A*(K) C(K)K - 822(1266(218)2+3A4(k2)8(k2>53(k2)](pq)(kq)}
[A*(K)K +B*(K)1°q"(1 +I1(q"))
'k {B(kz)[cuf) + C(K) - (A(p) +A(k))n<q>]
) [A*(K)K +B*(K)14°[1 +II(¢")]°
B (K)D(K*) + [2B(K)A(K) C(K) —D(k)Az(kz)]kz}
[A*(K)K +B*(K)1’¢°[1 +11(¢")]

{A(k2>A<p2>[C(p2> + C(K)H(k, q) -

D(p) =1+

[A(Pp®) +A(K)]

1
r =" 2

(@) f(Z ) (AN (pH)p® + B (p)1A(K)KE + B (k)]
A(kz)[A(]?) +A(k)] B C _2A B D(p*))H(k 2A42(p2) C( ) kap’ 1 Iﬂ _
e B (] L E PICW) =24 BGH D)) Hik @) +24°G") Crkap (1 +7 1|
AP [A(PY) +A(K)]
[A* (KK + B> (k)]

[(B () C(K) = 2A(K)B(K)D(K)) H(k, ) +2A%(K) C(K) kqk’ (1 +’;‘1)]}

where H(k, q) =2k’ —4kq —6(kq)’/q°. By all appearances, all the above three functions are not the functions of the
fermion mass. From them, we will numerically investigate C(p*), D(p’), IT'(q’). It is noted that the three functions
have no effect on our model in chiral limit.

2 Numerical Results

In chiral limit, we first define the original value of each function as a plus value to iterate, till the DS equations (11)
to (13) obtain stable results. We plot them in Fig. 1 and name this as a conventional or a plus solution. This solution
was discussed in previous work™'.

Then, starting from B <0, we also iterate the equation group to obtain a stable result and show A(p’), B(p’) and
I1(g%) in Fig.1. We can see from Fig. 1 that the behaviors of A( p’) or I1(q°) are apparently different between the
chirally symmetric phase and asymmetric phase, but are uniform when B >0 and B <O0.
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Fig.1 Functions in the chirally symmetric phase and asymmetric phase. (a) A(p?); (b) B(p?); (¢) II(¢*)

One sees that the function of fermion self-energy is negative at all p* and its absolute value is similar to a plus solu-
tion while the other two functions A, II do not reveal different behaviors between B >0 and B <0. Then, setting B=
0, we numerically solve the coupled DS equations to obtain the Wigner solutions and they are also shown in Fig. 1.
The trivial solution of fermion self-energy lies between B <0 and B >0. However, corresponding A, II reveal different
behaviors when B#0. In infrared region, A diminishes when [T increases and diverges when p’—0.

Beyond chiral limit, we also study the linear effect of fermion mass on propagators. Using the above method, we
obtain C(p*), D(p°) and H’(qz) as shown in Fig.2.
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Fig.2 Functions in the broken phase. (a) C(p*); (b) D(p*); (¢) II'(¢*)
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One sees that there are two apparently different solutions for C(p°) and IT'(¢”), while we find only one solution for
D(p*). All solutions for the three functions hardly change in the infrared region, but each value of the solutions dimin-
ishes in large momentum. When B >0 which is studied frequently in previous works, the DS equation gives the plus
solution for C(p*) and negative IT'(g”). The infrared value of vector function of the fermion propagator decreases with
the increasing mass. Nevertheless, for B <0, the second infrared value for vector function gives the opposite move-
ment, and the difference between two infrared values gets large with the increasing mass.

In principle, there should be two solutions for D(p*), corresponding to C(p*), IT'(q’), while we only find one and
it is plus. Therefore, the two scalar functions of the fermion propagator tend to equal each other and this is in accord-
ance with Ref. [9] where QCD is used.

3 Conclusion

We have investigated the coupled DS equation for the fermion propagator in the unquenched QED;. In chiral limit,
we find that, besides two familiar nonnegative solutions, there is a negative solution for this equation. Moreover, there
exist two solutions for the DS equation beyond chiral limit. Since QED, may be relative to the theory of d.._,. supercon-
ductivity, those solutions can be used to analyze the existence of three phases, antiferromagnet, pseudogap and super-
conductivity. We suppose that massless QED, is suitable in the underdoped region, especially near the area where the
above mentioned three phases compete, and QED, with fermion mass does in the overdoped region in phase figure for
YBCO.
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QED, FEZEMMBAKXRENL

(R KRFWREZ, &7 211189)

FEE by TAKAE XK A 09 3F AR 25 R Ak Bwk A A7 QCD 2 40 28 45 F 4 22 P 49 3% T B AL A 3F o B AE,
QED A4 A 3 9 FE MARAE A, TT AT I AL B A 2 Ao I T 45 36 T 8 0 K AR A A0 @ 6940 % 19V AL, B L A T
&8 QED; kAL ks FIA. 4 s K F P ish % 89 Dyson-Schwinger 75 42, X )& R KAk . 2
RN, B FARIRT AR A5 3 AN, o ARAL T AEAR LT ) A2 2 AN, 32 8 Ay 2 T R
Fledg e KBt FALARMR T o9 3 R B R T A ko 47 3 AN ARey 578, Bp sk miAn R e B AR T 4. M A M
FAERIRT , RIBLE2 N KT ER.
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