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Abstract: In order to effectively derive the inverse kinematic
solution of the Delta robot and realize actuator control, a
description of the linear graph principle for automatically
generating kinematic equations in a mechanical system, as
well as the symbolic computation implementation of this
procedure, is reviewed and projected into the Delta robot.
Based on the established linear graph representation, the
explicit symbolic expression of constraint equations and
inverse kinematic solutions are obtained successfully using a
symbolic computation engine Maple, so that actuator control
and trajectory tracking can be directly realized. Two practical
motions, the circular path and Adept motion, are simulated for
the validation of symbolic solutions, respectively. Results
indicate that the simulation satisfies the requirement of the
quick motion within an acceptable threshold. Thus, the
precision of kinematic response can be confirmed and the
correctness of inverse solution is verified.
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he robot Delta, which was initially developed by

Clavel in 1985, is a famous spatial parallel mecha-
nism allowing three translational degrees of freedom
(DoF)™ . Due to the superior qualities of large work-
space, high speed and weak kinematics coupling, Delta is
drawing more and more attention of scholars and engi-
neers.

To model this mechanism, the proposed ways of kine-
matic solving are mainly covered by the analytical method
and the numerical approach'®’. Earlier studies focused on
the analytical method and closed-form solutions. Kine-
matic singularity and optimal design are discussed a lot by
Clavel et al”™

derivations. Followed by the numerical method, which

. But these can be cumbersome with hand
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invokes the iterative solver of nonlinear equations with
mathematical engines, researchers need to better under-
stand the mechanism in advance so that constraint equa-
tions can be programmed and solved. Thus so far, the
widespread system-level solving procedure is always im-
plemented on several steps such as the established physi-
cal model in Pro/E, Solidworks, etc.,
analysis in ADAMS, and numerical iteration in Matlab
with every time step, etc. However, complexity and low
computational efficiency exist in the procedure, and the
numerical expression does not give a distinct symbolic
representation. Recently, the symbolic technology of the
graph theory has been applied to a mechanical system.
Formulating symbolic equations attracts much interest due
to the advantages of integrative modeling, automatic re-
moval of multiplications and trigonometric simplifica-
tions, etc!”. McPhee et al.!” further developed an ap-
proach that the mechanism’s topology was modeled with a
linear graph. Also, several examples such as slide-crank
mechanism, a planar 3-DoFs robot and a general open-

the kinematic

loop robot have been implemented™ . Though researchers
claimed that symbolic computation can be applied to more
complex robots with closed-loops, few cases have been
reported to date, especially on Delta. Since a general
symbolic computation engine such as Maple, MuPad and
Mathematica is required; that is, they can be coded into
routines and run while simulation codes are being pro-
cessed without providing users to manipulate the underly-
ing equations. We apply similar applications on Delta.

In this paper, the multibody analysis of Delta on coor-
dinate selection and how to manipulate the symbolic equa-
tions are given. Explicit symbolic expression of con-
straints and inverse kinematic solutions are obtained by
using a computation engine—Maple™ . Finally, actuator
control can be directly realized, and the correctness and
precision are verified with trajectory tracking.

1 Principle of Symbolic Computation on Delta
Robot

1.1 Linear graph theory applied to mechanical sys-
tems

In the linear graph of a mechanical system, different
spanning trees in conjunction with many algorithms have
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been developed to describe their topology, which is
proved to be a convenient method”'. Definitions of
nodes, edge, circuit, tree and subgraph for a mechanical
system have been described as well. Rigid body elements
m, which start at the ground node, end at the node repre-
senting a reference frame at the center of mass. Rigid arm
elements r,
frames relative to the mass center, start at the mass center
and end at the desired node. Joint elements j, which de-
fine the allowable motions between two bodies comprising
a kinematic pair, contains different edge types for differ-
ent joints such as revolute joints s, prismatic joints s,
universal joints u, ball joints b and translational joints ¢.

which are used to define new reference

After all elements are defined, physical modeling can be
established. Since we focus on the kinematics, the system
dynamics is beyond the current scope and the procedure is
simply processed as follows:

1) Linear graph representation. The fundamental cir-
cuit subsets, which provide closure conditions around any
loops and are satisfied with the associated edge across
(translation, rotation) variables, are primarily taken into
account.

2) Spanning tree selection for coordinates. When a tree
is selected for the graph, the circuit equations can be used
to express all the kinematic variables, and the branch co-
ordinates ¢ are defined.

3) Constraint equations projection and simplification.
The constraints are generated by projecting the circuit
equations for cotree joints onto the reaction space. The
closed chain with an incidence matrix representation of
the linear graph agrees well with the dependent branch co-
one obtains m nonlinear algebraic
equations in terms of the n branch coordinates q:

. 10
ordinates""”. Thus,

P(q.1) =0 (1)

The system’s DoF can be given by f=n —m.

As an example, the slide-crank mechanism is depicted
in Fig. 1. Rigid arm elements r, to r, are selected for the
tree of the graph with kinematic transformations since no
unknown coordinates or variables are introduced into q.
By selecting the h,, h,, s, into the tree, the joint coordi-
nate is set as

q=10B.8, 5] (2)

where B is the revolute joint angle and s is the prismatic
displacement. Then the reaction space for A, is spanned
by unit vector i and j (the directions of the joint reaction
forces), onto which the circuit equation for A, is projec-
ted:

¢=ha 'P=(Rr‘ _Rn _Rh;+Rs‘ _Rh, +R»~, _Rrj) *p
(3)

where p can be i orj, and R, is the translational vector of

element. Substituting the elemental constitutive equa-

tions, for instance, R, =0, and evaluating, we obtain

&= {L3400sﬁ3 +s, —L,cosB, =0 (4)

Ly, sing; — Ly sing, =0

where L,, and L,, are the length of the two arms, respec-
tively. Thus, we obtain m = 2 constraint equations in
terms of the n =3 branch coordinates for this 1-DoF sys-
tem. This have been demonstrated by McPhee'”’ and one
can use symbolic computing to time-differentiate the posi-
tion-level constraint Eq. (1).

(b)

Fig.1 Linear representation example. (a) Slider-crank mecha-
nism; (b) Linear graph of slider-crank

1.2 Symbolic representation of Delta robot

Similarly, we apply the above procedure to the Delta
robot which consists of a moving platform connected to a
fixed base through three parallel chains with 120° away
from each other (see Fig.2 and Fig.3). Each chain con-
tains a revolute joint activated by an actuator on the base.
Movements are transmitted to the moving base through
parallelograms formed by bars and spherical joints. Espe-
cially, a couple of spherical joints in each leg can be re-
placed by universal joints because the parallelogram struc-
ture makes an extra constraint for the 3-DoF translational
motion*/.

Since the Delta has a complete symmetrical topology,
the symbolic representation is determined only by choo-
sing one chain. Just like the virtual joint vh,, depicted in
Fig.1(b), we use a joint 7, which allows only three
translational DOFs for Delta, and then it can translate the
full linear graph into a subgraph with a single chain ( see
Fig.3(b), dot line). In this subgraph, spherical joints
b,,-b,, are chosen while they are excluded from all single
or separate trees because there are no variables appearing

Fig.2 Delta mechanism with vector coordinates
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Moving base
(b)

Fig.3 Delta representation. (a) One typical kinematic chain; (b)
Linear graph representation

in equations. As a result, joint coordinates with a set of
constraints are reduced, and the single spanning tree will
include the following elements: rigid bodies (r,-r;, ;-
r's) , revolute joint &, , universal joints u,,-u,, and virtu-
al joint #z,. Each revolute joint contributes 1 coordinate,
the universal joint contributes 2 and the virtual joint con-
tributes 3, so a total of 8 joint coordinates can be ob-
tained as

q=[hy w0, U, »Xs, ,y,“,z,“] (5)

Note that the universal joint can be dissociated into two
orthogonal revolute joints, and the parallelogram structure
makes u,,, = u,,, and u,,, =u,,,. The resulting set of coor-
dinates is reduced to 6 with

q= [hn s Ut s Uy ’xz”’yr,"zx(,] (6)

The constrains associated with leg k (k=1,2,3) can be
acquired by projecting the circuit equations onto the reac-
tion space for b,, and b,,. By substituting variables, the
constraints are of the general form as

fx(ak’ak’Bk’r(t)) =0
D0, 00,B,7(1)) = 1,0 s,B,,r(1)) =0 (7)
-fz(gk’ak’Bk’r(t)> =O

where 6, is the driving angle of joint %, ; «, and B, refer
to universal joint angles of U, , and U,,,; and r(t) refers

1a

to the prescribed motion x, , y, and z,. Giving an insight
into Eq. (7) with the joint dissociation of «, and 3, , it is
simplified as

f(0,,0,,r(t)) =0
P (O 0,B0) =1£,(6,,B,,r(1)) =0 (8)
fz(ek’akvﬁk’r(l‘)) =0

which indicates that inverse solutions of Delta can be ob-
tained by only solving one single kinematic chain. The
velocity and acceleration equations can be obtained by
taking the derivative of Eq. (8) with respect to time. Ap-
parently, the general form Eq. (8) is a little different
from conventional vector loops solutions''"’ which are in
the form of three driving angles 6, and three translation
positions r(¢), but in fact, results will be the same when
solving.

2 Simulation and Symbolic Verification
2.1 Physical model and multibody analysis

To confirm the symbolic representation, the physical
model of Delta is built in MapleSim'"’ so that mechanical
components can be defined based on the linear graph.
Fig. 4 depicts the model and the parameters are given as
follows; the revolute joint is 0.25 m away from the fixed
frame with an orientation angle of - m/6; the driving
arm is 0.4 m in length; two sides of the parallelogram are
0.1 m and 1 m in length, respectively; the moving base
has a radius of 0. 05 m. Parameters are chosen generally
for easy computation so that the Pythagorean theorem is
satisfied in chains when all the driving angles equal 0. In

Parallelogram leg

(b)

Fig.4 Delta robot model (unit; m). (a) 3D physical model;
(b) Geometrical singularity
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this case, the calculated workspace is defined by the driv-
ing angle as 6, € ( - arccos(1/3) ,m —arccos(1/7) ] and
7< 0. Thus, the geometrical singular is avoided when
solving inverse kinematic. Fig.4(b) depicts the range of
arm motion for better understanding.

2.2 Symbolic manipulation of inverse kinematic

When formulating a mechanical system’s equations,
there are some coordinate selections in the optimization
techniques. The optimization procedure always requires
multiple evaluations of objective functions and might be
very tedious. By using the indirect joint coordinate'®’,
we obtain a result that 18 variables are given in a set of 15

ConEgs: =

- ((5x(1)c0s(A) +5y(D)sin(A) = D)sin(8, (1)) +5¢05(6, (1))z(1) )sin(a, (1)) = cos(ay, (1)) (x(D)sin(A) = y(1)eos(4))
—(5x(1)cos(A) +5y(1)sin(A) = D)cos(, (1)) = sin(6, (1))2(1) +sin(By (1)) ~ 2=
%(Sx(t)COSM) +5y(1)sin(A) —1)sin(, (¢)) +5cos(6, (1))z(t))cos(a, (1)) +%(SX(t)sin(A) =5y(t)cos(A))sin(a,, (1)) +cos(B, (1))
—((5x(1)cos(A) +5y()sin(A) = 1)sin(0, (1)) +5¢05(8, (1))2(1))sin(ar (1)) = cos(au (1) (x(1)sin(A) = y(1)cos(A))

%(Sx(t)cos(A) +5y(t)sin(A) —1)cos(6, (1)) —sin(g, (1) )z(1)) +sin(B, (1)) —%

constraints equations (3 for moving base motion of X, Y
and Z, 1 for revolute joint in driving arm, 4 for a couple
of universal joints). A snapshot of the 5 constraint equa-
tions set is shown in Fig. 5, where x(t), y(t), z(t) cor-
respond to the desired motion of moving base, parameter
A represents the orientation angle, and the variables «
(t), B(t) and §(t) are universal joint angles and revo-
lute joint, respectively. Obviously, this inverse symbolic
representation is in the form of Eq. (8). Note that the
latter four constraints have duplications due to the univer-
sal joint u, and u,,. By only solving the former three
equations for 6(7), the explicit symbolic representation of
the kinematic solution can be easily obtained (see Fig.5).

Solution; = {ol (1) = —%(125x(t)zz(t)2 —50x(t)cos(A)z(1)> +125y(1)*z(1)> =50y(t)sin(A)z(1)> +125z(1)* =5x(t)cos(A) ( —z(1)*> —625x(1)* -

500cos (A)x(1)* =300x(7)*cos(A)* +1250x(t) y(1)*> —500sin(A)x(1)* +1250x(1)*z(1)* —500x(t)cos(A)y(1)* —600x(r)sin(A)y(t)cos(A) -
500x(t)cos(A)z(1)* +300cos(A) y(1)*> +625y(1)* =500sin(A)y(1)* +1250y(1)*z(1)> =500y(r)sin(A)z(1)> +625z(r)* -1 000x(1)* +
560x(1)cos(A) —1300y(t)* +560y(t)sin(A) —1400z(1)* +384))"> —5y(t)sin(A) ( —z(1)*(625x(t)* —500cos(A)x(1)’ —300x(1)’cos(A)* +
1250x(1)7y(1)* =500sin(A)x(1)*z(1)> +1 250x(1)>z(t)> =500x(1)cos(A)y(t)> —600x(t)sin(A)y(t)cos(A) —500x(r)cos(A)z(1)* +
300c0s(A) y(1)* +625y(t)* —500sin(A)y(1)* +1250y(1)>z(1)* =500y (1)sin(A)z(1)* +625z(1)* =1 000x(1)*> +560x(1)cos(A) -1 300y(t)* +
560y(t)sin(A) —1400z(1)> +384))"> =100z(1)” + ( —z(1)*(625x(1)* —500cos(A)x(1)* =300x(1)*cos(A)* +1 250x(1)>y (1) -
500sin(A)x(1)*y(1) +1250x(1)*z(1)> =500x(1)cos(A)y(1)> —600x(1)sin(A)y(t)cos(A) —500x(t)cos(A)z(t)> +300cos(A)’y(1)> +625y(1)* -
500sin(A)y(£)* +1 250y(t)*z(t)* —500y(¢)sin(A)z(1)*> +625z(1)* =1 000x(1)> +560x(1)cos(A) —1300y(1)* +560y(t)sin(A) —1400z(t)> +

384))"*)/(z(1) (25x(t)*cos(A)” +50x(1)sin(A)y(t)cos(A) —25cos(A)’y(1)> —10x(r)cos(A) +25y(1)> —10y(1)sin(A) +25z(£) +1)) }

Fig.5 Symbolic computation of Delta in Maple. (a) Constraints equations; (b) Inverse solutions

3 Actuator Control and Trajectory Tracking

To verify the symbolic solution, the simulation of
block components are created by using the derived equa-
tions so that an controller is designed. Here, the control-

ler can be made for each single chain with three input var-
iables of desired motion X, Y and Z, one output variable
of driving angle # (¢) and one orientation angle. By
using a virtual electrical driving subsystem ( see Fig.6) ,
the kinematic relations for any desired trajectory can be

Position '~ {-—= === | et e e e e e e b >
controller |
x( t) n Name ImverseKinematic
i" TyPe  InwKinClass
T [ j."- V Parameters 0(1)
5 J r
Signal input Feedback PID " Wiowor YO W e Ly ]
3
Q sla z(1) Orientation angle set
et mr—f f—1
! °
& [
Desired position Driving angle

Angle sensor Kinematic chain

signal input signal output

Fig.6 Subsystem diagram with PID control for a single kinematic chain
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evaluated.

Two motion curves are chosen for trajectory tracking,
respectively. One is the circular path in the X-Y plane
used for the correctness test under ideal conditions ( see
Fig.7); the other is Adept motion'”’ which is always
used as a benchmark test in Pick-and-place operation ( see
Fig.8).

Ty

s
0.2 0.4

| — Desired path
- Point track

1.0

0.8F

Driving-angle: ————-""
== 6, (1) |
0.6 —— R T

0.4

0.2

B e

Driving angle/rad

-0.2 1

-0.4 1

-0.6 -

(b)
Fig.7 Circular path for kinematic response. (a) Circular path in
X-Y plane; (b) Driving angles of inverse kinematic

The desired circular trajectory ( see Fig.7), in which a
straight line is inserted at the start of the path to test
whether trajectory change will have an effect on the re-
sults or not, is compared against the actual point track.
Note that both the straight line and circular segments
agree with the kinematic motion well. For Adept motion
(see Fig.8), the inverse kinematic solution is verified by
a PID controller with position feedback. The trajectory,
point track, driving angles and errors can be observed as
well. As expected, the simulation satisfies the require-
ment of the motion and the trajectory error is within ac-
ceptable thresholds for kinematic response.

4 Conclusion

According to the linear graph representation of the Del-
ta robot, the inverse kinematic can be derived with a
symbolic form. The symbolic equations representation are
successfully performed and confirmed using a computation

x/m
-0.4 -0.2 0 0.2 0.4
-0.7r
E 9.8+ :
N G — Desired path
o Point track
=0.9r
(a)
1.2
i Driving angle:
0.8 i —=6,(1)
,’ \ - 6,(1)
Y 65 (1)
B o4k
3 \
=)
§ o N ||
20 203 4 6 8
E N s 7
N
-0.4r1 N 7t
\\ /
BN //
-0.8F \\\\//
-1.2 "

(b)
Fig.8 Adept motion for kinematic response. (a) Motion trajec-
tory; (b) Driving angles of inverse kinematic

engine. Based on the symbolic solutions, actuator control
and trajectory tracking are designed so that the kinematic
response is proved to be correct and effective.
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