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Abstract: In order to avoid the noise and over fitting and
further improve the limited classification performance of the
real decision tree, a traffic incident detection method based on
the random forest algorithm is presented. From the perspective
of classification strength and correlation, three experiments are
performed to investigate the potential application of random
forest to traffic incident detection: comparison with a different
number of decision trees; comparison with different decision
trees; comparison with the neural network. The real traffic
data of the I-880 database is used in the experiments. The
detection performance is evaluated by the common criteria
including the detection rate, the false alarm rate, the mean
time to detection, the classification rate and the area under the
curve of the receiver operating characteristic (ROC). The
experimental results indicate that the model based on random
forest can improve the decision rate, reduce the testing time,
and obtain a higher classification rate. Meanwhile, it is
competitive compared with multi-layer feed forward neural
networks (MLF).
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raffic incident detection is important in the modern

ITS. Here the traffic incidents are defined as a traf-
fic congestion phenomenon by occasional events, such as
traffic accidents, car breakdowns, scattered goods, and
natural disasters'" .
occur unexpectedly and cause undesirable congestion and
mobility loss. If the abnormal condition cannot be detec-
ted and fixed in time, it may increase traffic delay and re-
duce road capacity, and it often causes second traffic ac-
cidents. Therefore, traffic incident detection plays an im-
portant role in most advanced freeway traffic management

Freeway and arterial incidents often
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systems.

The artificial intelligence algorithm is one of the recent
developed algorithms in traffic incident detection, which
can detect incidents by either a rule-based algorithm or a
pattern-based algorithm. Traffic incident detection net-
works usually are multi-layer feed forward neural net-
works (MLF), and signals are input to the neural net-
work, which has previous data, and the signals are
weighted and propagated to an output signal, suggesting

1 Some tech-

either incident or incident-free conditions
niques based on artificial intelligence are adopted to detect
traffic incidents. Srinivasan et al.'” evaluated the inci-
dent detection performances of three promising neural net-
work models: the MLF, the basic probabilistic neural
network (BPNN) and the constructive probabilistic neural
network (CPNN) and drew a conclusion that the CPNN
model had the highest potential in the freeway incident
detection system.

Although the artificial neural networks have achieved
better performances than the classical detection algo-
rithms, there are two defects limiting its wide applica-
tion. The defects are that artificial neural networks cannot
afford a clear explanation of the principle about how their
parameters adjust, and it is difficult to obtain the optimal
parameters of the neural networks. Payne et al.'"
decision trees for the traffic incident detection'. The al-
gorithm in Ref. [4] uses the decision trees with states,
and the states correspond to distinct traffic conditions.
Chen et al. "™ used decision tree learning for freeway au-
tomatic incident detection in 2009, and the decision tree

used

was used as a classifier. Compared with the artificial neu-
ral networks, their method not only avoids the burden of
adjusting appropriate parameters, but also improves the
average performance of traffic incident detection. Howev-
er, the defects of the decision tree learning algorithm in-
clude two aspects: the classification strength of a decision
tree is low and the decision tree is easy to overfit. In or-
der to solve these two problems, we adopt random forest
to detect traffic incidents, which is based on a decision
trees ensemble.

1 Random Forest for Traffic Incident Detection

1.1 Principle of random forest

1

Breiman'” proposed the random forest algorithm in
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2001. Random forest is an ensemble of unpruned classifi-
cation trees, which is induced from bootstrap samples of
the training data, and it uses random feature selection in
the tree induction process. Prediction is made by aggrega-
ting the predictions of the ensemble. The common ele-
ment in all of these procedures is that for the k-th tree, a
random vector @, is generated, independent of the past
random vectors @,, ..., @,_, but with the same distribu-
tion; and a tree is grown using the training set and @,,
resulting in a classifier A(x, @,), where x is an input vec-
tor. Decision trees in the random forest model are genera-
ted by the bagging algorithm. Bagging ( bootstrap aggre-
gating) 1is a classic algorithm in machine learning. It is an
ensemble method for multiple classifiers. For more de-
tails, refer to Ref. [8]. For instance, in the bagging al-
gorithm, the random vector @ is generated as the counts
in N boxes resulting from N darts thrown randomly at the
boxes, where N is the number of examples in the training
set. In random split selection, @ consists of a number of
independent random integers between 1 and K. The na-
ture and dimensionality of @ depend on its use in tree
construction. After a large number of trees are generated,
they vote for the most popular class'” .

Random forest is a classifier consisting of a collection
of tree-structured classifiers {h(x, ©,), k=1, 2, ...},
where the vectors{®, }are independent identically distrib-
uted random vectors, and each tree casts a unit vote for
the most popular class at input x. Given an ensemble of
classifiers h,(x), h,(x), ..., h,(x), and with the training
set drawn randomly from the distribution of the random
vector {X, Y} the margin function is defined as

mg(X. ¥) =av,I(h,(X) =y) - maxay, [(h,(X) =)
(1)

where I( - ) is the indicator function. The margin meas-
ures the extent to which the average number of votes at
X, Y for the right class exceeds the average vote for any
other class. The larger the margin, the more the confi-
dence in the classification. The generalization error is
given by

PE" =P, ,(mg(X,Y) <0) (2)

where subscripts X, Y indicate that the probability is over
the X, Y space. In random forest, h,(X) =h(X,0,).
For a large number of trees, it follows the strong law of
large numbers and the tree structure that, as the number
of trees increases, for almost all sequences @, ,---,0, _,,

PE” converges to
Py (Po(h(X,0) =Y) ~maxp,(h(X,0) =j) <0)
(3)

The result of Eq. (3) explains why random forest does
not overfit as more trees are added, but produces a limit

value of the generalization error. That is to say, random
forest can compensate for the defect of the decision tree.
An upper bound for the generalization error is given by

PE*spi(lzsz) (4)
s
where p is the mean value of the correlation; s is the
strength of the set of classifiers {h(x,®) | .

It shows that the two ingredients involved in the gener-
alization error for random forest are the strength of the in-
dividual classifier in the forest and the correlation between
them in terms of the raw margin functions. If random for-
est wants to get larger classification strength, the correla-
tion of each decision tree classifier must be smaller. To
obtain a smaller correlation, the differences between each
decision tree must be larger.

Suppose that for an incident detection problem, we de-
fine three different decision trees & (x,0,),h(x,0,)
and h(x,0,). We can combine these trees in a way to
produce a classifier that is superior to any of the individu-
al trees by voting. In other words, the value of x is clas-
sified to the class that receives the largest number of
votes. As shown in Fig. 1, the predictor space is divided
into three regions. In the first region, R1 and R2 classify
correctly but R3 is incorrect; in the second region, Rl
and R3 are correct but R2 incorrect; and in the third re-
gion, R2 and R3 are correct but R1 is incorrect. If a test
point is equally likely to be in any of the three regions,
each of the individual trees will be incorrect one third of
the time. However, the combined tree will always give
the correct classification. Of course, there is no guarantee
that this will occur and it is possible ( though uncommon)
for the combined classifier to produce an inferior perform-
ance. So random forest can basically compensate for the
problem of classification strength and improve the classifi-
cation accuracy.

IF the test point in R2

R2;right R2 : wrong R2 .right
R1 ;right R1 :right R1 : wrong
R3 : wrong R3 ;right R3 :right
Right =1 Wrong =1 Right =1

Right =2 ,Wrong =1

Fig.1 Vote procedure diagram

1.2 Construction of data sets for training and testing

The incident is detected based on section, which means
that the traffic data collected from two adjacent detectors,
the up-stream detector and the down-stream detector, are
used for calibration and testing. The traffic data consists
of at least the items as follows:
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e Time when data collected ¢,,i =1,2,-+- ,n; rate (CR) are used to evaluate traffic incident detection
e Speed, volume and density of the up-stream detec-  algorithms. We cite the definitions as"”
tor s, Vs dyy i =1,2,000 05 _ Number of incident cases detected
® Speed, volume and density of the down-stream de- DR = Total number of incident cases x100%  (5)
tector Sy, Vi s @aniri =1,2,,1;
e Traffic state L,, i=1,2,,n. FAR = Number of false alarm cases % 100%
where the item of traffic state is a label. The value of the Total number of non-incident cases
label is —1 or 1, referring to the non-incident or incident, (6)
respectively, which is determined by the incident dataset. PR A
Typically, the model is fit for part of the data ( the train- MTTD = m (7)
ing set) , and the quality of the fit is judged by how well
it predicts the other part of the data (the test set). The CR = Number of instances correctly classified % 100%
entire data set is divided into two parts; a training set that Total number of instances
is used to build the model and a test set that is used to test (8)

the model’s detection ability. The training set consists of
45 518 samples including 43 418 non-incident instances
and 2 100 incident instances (22 incident cases) and the
test set consists of 45 138 samples including 43 102 non-in-
cident instances and 2 036 incident instances (23 incident
cases). The test set is separated from the data and is not
used to monitor the training process. This process prevents
any possibility that the best regression models selected may
have a chance correlation to peculiarities in the measure-
ments of the test set and reduces the risk of over fitting.

The number of X-variables ( predictor variables) is 7.
This means that the matrix X used in training the model
has the size of 45 518 x7. The test data X forms a matrix
with a size of 45 138 x7. The formal description of ma-
trices X and Y can be written as follows:

X=[x x, x; - x;]=
tl Supl Vup] dupl sdn] vdn] ddnl
t2 SupZ VupZ dup2 san Van dan
IS SupS vupS dup3 sdn3 vd113 ddnS
tn Supn Vupn dupn Sdnn vdnn ddnn

Y=[y, » yn]T=[L1 L, L, LHJT

where each row is composed of one observation; n is the
number of instances; and y, e { —1,1}. The data analy-
sis problem is related to matrix ¥, which is predicted by
some function of matrix X (e. g. traffic state) using the
data of X, y=f(x). The training set is used to develop
the random forest model that is in turn used to detect inci-
dents for the test set samples. The output values of detec-
tion models are then compared with the actual ones for
each of the calibration samples, and the performance
measures are calculated and compared.

2 Performance Measures

2.1 Definition of DR, FAR, MTTD and CR

Four primary measures of performance, namely, the
detection rate ( DR), the false alarm rate ( FAR), the
mean time to detection (MTTD) and the classification

2.2 ROC curves

Receiver operator characteristic ( ROC) curves illus-
trate the relationship between the DR and the FAR. Often
the comparison of two or more ROC curves consists of ei-
ther looking at the area under the ROC curve ( AUC) or
focusing on a particular part of the curves and identifying
which curve dominates the other in order to select the
best-performing algorithm. It is also equivalent to the
Wilcoxon test of ranks. The AUC is related to the Gini
coefficient G, ,

G, +1
AUC =

, G =1 - i(xk =X ) (Y, +Y,)
(9)

2.3 Statistics indicators

In statistics, the mean absolute error ( MAE) is a
quantity used to measure how forecasts or predictions are
close to the eventual outcomes. The mean absolute error
is given by

1

MAE = —% | ¥, -7,
n =

i

(10)

The root-mean-square error ( RMSE) is a frequently
used measure of the differences between values predicted
by a model or an estimator and the values actually ob-
served. These individual differences are called residuals
when the calculations are performed over the data sample
that is used for estimation, and are called prediction er-
rors when computed out-of-samples. The RMSE serves to
aggregate the magnitudes of the errors in predictions for
various times into a single measure of predictive power.

RMSE = (11)

Ts (7 _yy
X (=)

The equality coefficient (EC) is useful for comparing
different forecast methods. For example, whether a fancy
forecast is in fact any better than a naive forecast repeat-
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ing the last observed value. The closer to 1 the value of
EC, the better the forecast method. A value of zero
means that the forecast is no better than a naive guess.

EC =1 - Vi(y n
NOERNOE:

we perform three groups of experi-

(12)

3 Case Study

In this section,
the first experiment compares decision tree with
random forest,
forest detection performance from the perspective of the
number of trees,
with random forest. Three experiments are performed on
I-880 real data to investigate the performance of the ran-
dom forest method. Evaluation indicators include DR,
FAR, MTTD, CR, ROC and AUC. Compared with the
other four indicators, ROC and AUC can comprehensive-

ments ;
the second experiment compares random

and the last experiment compares MLF

ly evaluate the performances.
3.1 Data description

The data was collected by Petty et al. at the I-880 Free-
way in the San Francisco Bay area, California, USA. This
is the most recent and probably most well-known freeway
incident data set collected, and it has been used in many
researches related to incident detection.

3.2 Experiment 1

The number of trees in the group of experiments is
from 10 to 100. We increase the number of trees in order
to obtain a greater difference. Five performance meas-
DR, FAR, MTTD, CR and AUC are computed for
different numbers of trees, which are shown in Tab. 1. It
is observed that different numbers of trees yield similar
classification rates, and random forest obtains a better
CR. As FAR is concerned, 0. 87% of the FAR yield by
40 trees is the best one. 10 trees obtains the lowest
MTTD with 0. 84 min; however, the MTTD of 100 trees
is obviously longer than that of 10 trees. The DR of 100
trees is 92.09% , which is the best. The AUC of 100
trees is 94.69% , which is also the best. Among five
comparisons, RF-100 outperforms the other RF methods
in DR, CR and AUC. To a certain extent,
cluded that the one with the larger number can obtain
greater classification strength and slightly better incident
detection ability. In the I-880 data set, when the tree
number is 100, it can obtain some improvement except in
the case of FAR.

Next, we compare the performance of random forest by
ROC curves. ROC graphs plot FAR on the x-axis and DR
on the y-axis. Fig.2(a) illustrates DR vs. FAR, where

ures,,

it can be con-

Tab.1 Comparison of different numbers of trees

Trees DR/ % FAR/% MTTD/min CR/% AUC/%
10 84.92 0.93 0. 84 98.13 91.36
20 88.26 0. 96 0.94 98.37 92.98
30 89. 63 0.92 1.07 98.57 93.62
40 90. 37 0.87 1.22 98. 67 93.96
50 90.72 0. 88 1.35 98. 67 94.09
60 91.16 0.92 1.29 98. 66 94.30
70 91.31 0.94 1. 65 98. 66 94.36
80 91.31 0.95 1.76 98. 66 94. 34
90 91.31 0.95 1.74 98. 68 94.33
100 92. 09 0.95 1. 86 98.70 94. 69

Average  90.11 0.93 1.37 98.58 93.80

Note: The best result is highlighted in bold.
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Fig.2 Comparison of different numbers of trees.
ROC curve; (b) Part enlarged of ROC curve

(a) Total

it is the total ROC and Fig.2(b) is the part enlarged cor-
responding to FAR from 0% to 0.1% . It is seen from
Fig. 2 that 100 trees is slightly superior to others, since its
curve is higher than that of others and very close to the
coordinate point (0,1) at the far left of the figure, which
means that it achieves a higher detection rate at the same
false alarm rate. We ran 50 replications of 10-fold cross-
validation to assess the error rate for a range of trees num-
bers with I-880 data. Tree number is from 10 to 100 in this
case. In 10-fold cross-validation, the training set is split
into 10 approximately equal partitions and each in turn is
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used for testing and the remainder is used for training. In
the end, every instance is used exactly once for testing.
Figs.3(a) to (h) show box plots of the error rates.
Horizontal lines inside the boxes are the median error
rates. Figs.3(a) to (e) are incident detection indicators
which are different degrees of growth except for FAR.
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When the number of trees is fewer than 70, DR, CR and
AUC grow relatively fast. FAR fluctuates around the me-
dian error rate 0. 093. In Figs.3(f) to (h), MAE and
RMSE decrease gradually and reach the lowest when the
tree number is 100. The value of EC is very close to 100,
which shows that random forest is highly effective.
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Fig.3 Box plots of 10-fold cross-validation test error rates of I-880 data set. (a) DR;(b) FAR;(c) MTTD;(d) CR;(e) AUC;(f)

MAE; (g) RMSE;

(h) EC
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3.3 Experiment 2

In the experiment, we compare the random forest clas-
sifier with the decision tree classifier. We use C4.5 and
CART as the decision tree classifier. The random forests
of 10 trees, 40 trees and 100 trees consider three random
features ( namely, RF-10, RF-40, and RF-100) when
constructing. The results from the random forest algo-
rithm are compared with those from C4.5 and the CART
algorithm with the I-880 data set. Five performance
measures, DR, FAR, MTTD, CR and AUC are compu-
ted for three algorithms, which are shown in Tab.2. It is
observed that two decision tree classifiers yield a similar
detection rate, and C4. 5 obtains a slightly better DR with
the corresponding number of 69.49% ; however, the DR

of random forests ( RF-10, RF-40, RF-100) are more
than 84% . Because the I-880 data set is unbalanced, the
performances of C4.5 and CART are not ideal. That is to
say, random forest can deal with unbalanced data. As
MTTD is concerned, the 0. 84 min of MTTD yielded by
RF-10 is the best one. Random forests (RF-40, RF-100)
generate 40 trees and 100 trees, so they consume more
time. RF40 obtains the lowest FAR with 0. 87% . Both
CR and AUC reach more than 90% , which are superior
to those of C4.5 and CART. The values of MAE, RMSE
and EC of random forest are the best among three differ-
ent algorithms, especially RF-100. Among five compari-
sons, to a certain extent, it can be concluded that random
forest can obtain a better incident detection ability com-
pared with C4.5 and CART.

Tab.2 Comparison of C4.5, CART and random forest

Method DR/ % FAR/ % MTTD/min CR/% AUC/ % MAE RMSE EC
C4.5 69. 49 1.07 1.12 97.59 80. 24 0.0275 0.2345 0.986 1
CART 69. 11 1.28 1.33 97.38 73.35 0.0278 0.2360 0.9858
RF-10 84.92 0.93 0. 84 98.13 91.36 0.0136 0.1649 0.9931
RF40 90. 37 0.87 1.22 98. 67 93.96 0. 008 6 0.1317 0.9956
RF-100 92. 09 0. 95 1. 86 98. 70 94. 69 0.007 1 0.119 4 0.996 4
Average 81. 19 1.02 1.27 98. 09 86.72 0.0169 0.1773 0.991 4

Note; The best result is highlighted in bold.

Next, we compare the performance of the random for-
est algorithm by ROC curves. Here we give one kind of
ROC curve, which is a transfiguration plot by DR against
FAR. As we all know, a single incident scenario contains
several incident instances. If an instance belonging to this
incident scenario is classified to an incident class, an
alarm is declared for this incident scenario and this inci-
dent scenario is detected triumphantly. When multiple in-
stances are classified to an incident class, only the in-
stance with the maximal probability is used for depicting
ROC curves, since its probability represents the probabili-
ty of the incident scenario being detected. Therefore,
such kind of ROC curve emphasizes the ability of an al-
gorithm to detect an incident as opposed to its FAR, so
DR and FAR are more meaningful for evaluating incident
detection algorithms. Figs. 4 (a) and (b) illustrate DR
vs. FAR, where Fig. 4 (a) is the total ROC and Fig. 4
(b) is the part enlarged corresponding to FAR from 0 to
0. 1. It is clear seen from this figure that random forest is
superior to C4. 5 and CART, since its AUC is larger than
that of C4.5 and CART. When the FAR is equal to 0. 1,
the AUC of random forest is greater than that of C4. 5 and
CART. In Fig. 3(b), when FAR’s value is less than
0. 02, random forests (RF-10, RF-40, RF-100) are clos-
er to the y-axis. So, it achieves higher DR at the same
false alarm rate.

3.4 Experiment 3

Among existing traffic incident detection algorithms,
the MLF has been investigated in freeway traffic incident

0.4 & - CART

-e-C4.5

- A - RF-10
0.2 - v - RF40
b - & - RF-100

1.0~

- 8- CART
-e-C4.5
-A- RF-10
-v - RF40

b - - RF-100

L ! ! ! ! |

0 0.04 0.06 0.08 0.10

(b)
Fig. 4 Comparisons of C4.5, CART and random forest.
(a) Total ROC curve; (b) Part enlarged of ROC curve
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detection and achieved good results. The magnitude of
weight adjustment and the convergence speed can be con-
trolled by setting the learning and momentum rates. The
value of the learning rate is set to be 0.3, and the mo-
mentum rate is 0. 2. The tree number of random forest is
set to be 100. Five performance measures, DR, FAR,
MTTD, CR and AUC are computed for MLF and random
forest, which are shown in Tab. 3. It is observed that
they yield similar classification rates, and random forest
obtains a better CR. DR and AUC of random forest are
better than those of MLF. As FAR is concerned, the
0.95% of the FAR yielded by random forest is the best

one. MLF obtains the higher MTTD with 4. 73 min. The
values of MAE, RMSE and EC of random forest are bet-
ter than those of other algorithms; especially when the
tree number is 100, the performance is the best.

Figs. 5(a) and (b) illustrate DR vs. FAR, where
Fig.5(a) is the total ROC and Fig.5(b) is the part en-
larged corresponding to FAR from 0% to 0.6% . The
performance of MLF is lower than that of random forest.
It is shown that random forest is significantly comparative
to an MLF neural network and our experiments demon-
strate that random forest has great potential for traffic in-
cident detection.

Tab.3 Comparison of MLF and random forest

Method DR/ % FAR/ % MTTD/min CR/% AUC/ % MAE RMSE EC
MLF 90. 03 1.34 4.73 98.27 92.70 0.008 6 0.1317 0.9956
RF-10 84.92 0.93 0. 84 98.13 91.36 0.0136 0.1649 0.993 1
RF-40 90. 37 0.87 1.22 98. 67 93.96 0. 008 6 0.1317 0.9956
RF-100 92. 09 0.95 1. 86 98.70 94. 69 0.007 1 0.1194 0.996 4

Average 89. 35 1.02 2.16 98. 44 93.17 0.009 5 0.1369 0.9952

Note ; The best result is highlighted in bold.
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0 : ‘ ' ' '
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FAR
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(b)
Fig.5 Comparisons of MLF and random forest. (a) Total ROC
curve; (b) Part enlargment of ROC curve

4 Conclusion

Based on the results of three experiments, the follow-

ing conclusions are made: 1) Random forest is effective
in enhancing the classification strength. 2) Random forest
is effective in avoiding over fitting. 3) Random forest has
strong potential in traffic incident detection.

Random forest achieves satisfactory incident detection
rates with deemed acceptable false alarm rates and mean
times to detect. As our experiments point out, random
forest can achieve better result if the number of trees is
appropriate for MTTD. The decision tree is an individual
classifier which only needs training one time, while ran-
dom forest needs to train many individual tree classifiers
to construct a decision tree ensemble. As a result, com-
pared with the decision tree algorithm, the random forest
algorithm consumes more time. It is concluded from our
testing results that random forest can provide a compara-
ble performance to a neural network. So it has a good po-
tential for application in traffic incident detection.

If the decision tree number is appropriate, the random
forest running time is short. So there is a great potential
The MTTD
problem should be noted when using random forest.

for real-time detection of traffic incidents.

There are many trees in the forest, but the key is how
many trees can achieve an ideal MTTD. Besides, random
forest lacks transferability like neural networks. So, how
to produce a transferable incident detection algorithm
without the requirement of explicit off-line retraining in
the new site, that is to say, adaptive traffic incident de-
tection based on random forest, needs further research.
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