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Abstract: In order to improve crash occurrence models to
account for the influence of various contributing factors, a
conditional autoregressive negative binomial ( CAR-NB)
model is employed to allow for overdispersion (tackled by the
NB component ), unobserved heterogeneity and spatial
autocorrelation (captured by the CAR process), using Markov
chain Monte Carlo methods and the Gibbs sampler. Statistical
tests suggest that the CAR-NB model is preferred over the
CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB
models, due to its lower prediction errors and more robust
parameter inference. The study results show that crash
frequency and fatalities are positively associated with the
number of lanes, curve length, annual average daily traffic
(AADT) per lane, as well as rainfall. Speed limit and the
distances to the nearest hospitals have negative associations
with segment-based crash counts but positive associations with
fatality counts, presumably as a result of worsened collision
impacts at higher speed and time loss during transporting crash
victims.
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crash

ith the increase in the number of vehicles, it is in-

V‘ V teresting and commendable that currently fatalities
are decreasing every year in China, the reason of which
can be attributed to the optimization of roadway designs,
more safety vehicles, as well as many researches of cra-
shes and the contributing factors. However, still 210 812
reported crashes and 62 387 reported fatalities occurred on
roadways in 2011 in China according to official re-
ports'', demanding the further improvement of transpor-
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tation safety to reduce the traffic accidents and fatalities.

The possible access to understand the elements of cra-
shes is to develop statistical analysis methods used to dis-
tinguish the significant factors, which can be utilized to
provide an optimality criterion to policy makers. During
the past several years, numerous methods for analyzing
crash counts were proposed”™ . The earliest approach for
crash count data is the Poisson model'”, and then it gives
rise to more flexible alternatives, e. g., the negative bi-
nomial ( NB) model'™, the GIS-based Bayesian ap-
proach™ , the finite mixture regression model"”, and the
quantile regression method'"'. Most of the regression
methods applied to model crash counts, however, are fo-
cused on aspatial (i.e. non-spatial) analysis. Applied
work in aspatial models may not be able to capture spatial
heterogeneity and spatial dependence at neighborhood are-
as, a frequently happening issue in crash counts. This
leads to the development of alternative methodologies that
focus on spatial modeling in the past few decades. Early
pioneering work on spatial modeling is reported by Be-
sag'™, and is further enriched by LeSage et al'"™".
Anselin'"” provided two specifications of spatial models,
spatial error model (SEM) (i.e., the spatial autocorrela-
tion model ( SAC)) and the spatial lag model ( SLM)
(i.e., the spatial autoregressive model (SAR)) that is a
special type of conditional autoregressive (CAR) model,
at least in a continuous-response setting.

The primary objective of this study is to develop asso-
ciations between crash counts on homogeneous segments
and the contributing factors, using a negative binomial
(NB)-based conditional autoregressive model ( CAR)
which allows for overdispersion, unobserved heterogenei-
ty and spatial autocorrelation. The Bayesian estimation is
employed, using Markov chain Monte Carlo methods and
the Gibbs sampler. The independent variables consist of
traffic characteristics, roadway design and built environ-
ments, and the data are derived from on-system highways
of Austin, TX, USA in the year 2010. Meanwhile, the
exposure variable and the dummy variable are also con-
sidered.

1 Model Structure

As described before, there are two specifications of
spatial models: the spatial autocorrelation model and the
spatial autoregressive model. The general formulation of
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the spatial autoregressive model for cross-sectional spatial
data is

y[:pwlyi+xiﬁ+¢ (1)

where y, contains an n x 1 vector of dependent variables;
p is the spatial lag coefficient; W, is the spatial weights
matrix; ¢ is the error term for spatial dependence; x, re-
presents the matrix of independent variables.

d=AW,¢, +& (2)

where A is the spatial autoregressive coefficient; W, is a
known spatial weights matrix like W,, usually containing
the first-order contiguity relationships; & ~ N(0, o’I,).
The SAR model tends to be difficult to develop for limit-
ed-response frameworks, especially when dealing with
large scale problems involving a large amount of observa-
tions, and yields parameter estimates similar to those esti-
mated from the CAR model. Moreover, due to faster com-
putation, the CAR model is preferred in spatial analysis
over the SAR model. Under the MRF assumption, the
conditional probability density function of the univariate
CAR model is "

1) = fymazen{ = oD [ ) -

azwii‘(d/r - M) ]2} (3)
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The joint probability density function is

1
(2m)"*det[ (I -aW) "'D,.1""

exp| -5 (b -) "D, (T-aW) (-p)]| (4)

fp) =

where i* denotes the neighboring locations of area i; i,i"
=1,2,--- n represent the areas for analysis; i, indicates
the spatially autocorrelated variable (a random variable )
and ¢ = { ¢, , ., -+, ¥, | '3 u, is the expected value
(i.e., mean value) of x, and g = {p, ,br, "oty | 3 O
is the conditional variance and D_. = diag ( a-f s a-; EE
o2); w,. is the weight that describes the distance or con-
tiguity relationships between i and i"; W= {w,.,w,.,
w7

rameter defined as measuring spatial association. This
study relies on the proper CAR specification for crash
rates with NB-based count model settings. The CAR
model is estimated using Bayesian Markov chain Monte
Carlo techniques coded in WinBUGS and employs an ad-
jacency matrix, as shown before. The crash rate is mod-
eled as a function of the covariates:

, w,=0and w,. =w,,; o is a smoothing pa-

A, =Ejexp(B, +B.X; +, +&;) (5)

where E,; is the exposure variable, which represents vehi-
cle miles traveled ( VMT) in this study; 7 denotes an un-
known parameter for the exposure measure; S, is the in-
tercept term; 3, denotes the coefficient of the k-th covari-

ate; X, are indicators for the k-th covariate for segment i;
i, follows the proper CAR prior, as described before; &,
is a random error that has a gamma distribution, that is,
e, ~1(6,0).

2 Data Description

In this study, roadways and crash data sets of Austin
City in USA in 2010 are used to examine the associations
between crash counts on mainlanes and the contributing
factors. The roadways in this study are on-system high-
ways, containing interstate highways, US highways,
state highways, farm-to-market roadways, etc. In order
to avoid the modifiable areal unit problem ( MAUP) """
roadways are split into 1 824 homogeneous segments
where geometric characteristics are coincident, as shown
in Fig. 1. Most segments have a length of 0 to 1. 6 km
and occupy more than 90% of the whole sample. The av-
erage of the segment length on mainlanes is 0. 459 km.
After merging crashes and segments, 1 413 crashes on
mainlanes are matched.

Fig.1 Distribution of homogeneous segments in Austin ( Spots
are the center points of segments)

In this study, the dependent variable is the number of
crashes, while the exposure variable captures VMT,
which is a key crash exposure term ( since crash counts
closely correlate with VMT, everything else remaining
constant) , and simply the product of AADT, segment
length, and 365 days per year. The dependent variable
set contains both continuous and categorical variables, as
shown in Tab. 1. The indicator for curvature is a dummy
variable, that is, if the answer is yes, it equals 1, and 0
otherwise. In addition, traffic characteristics allow for
AADT, speed limit, and the percentage of truck AADT.
In the past research, environments, especially distances
to the nearest hospitals, were rarely employed for the
contributing factors to analyze the associations of crash
counts. In this study, hospitals are collected for analysis;
meanwhile, the distances of which to segments are com-
puted by ArcGIS, as shown in Fig.2. The data of annual
rainfall obtained from the US Natural Resources Informa-
tion System are also collected for analysis. It is noted that
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it would be best to match the year 2010 crashes to the same
year rainfall data, however such information is unavaila-
ble, and we cannot find out the data. According to the

climate history in Texas, the annual rainfall changed a lit-
tle, so 1961—1990 average rainfall is used instead. Fig.3
depicts the distribution of the annual rainfall in Austin.

Tab.1 Summary statistics of variables for segments

Variable type Variable name Mean Standard deviation Min Max
Dependent variable Crash count 0.775 3.172 0 182
Exposure variable VMT/ (veh « km) 2 566.5 11 668.6 0 895 662

Average shoulder width/m 1.723 0.985 0 9. 144
Number of lanes 2.536 1.130 1 13
Median width/m 1.974 5.523 0 113.4
Indicator for curvature (1 =yes, 0 = otherwise) 0.418 0.488 0 1
Curve length/km 0.061 0.136 0 5.194
Covariates Degree of curve/(°) 1.345 3.873 0 72.550
AADT per lane/(veh - d~1) 1972 2 834 0 34 267
Percentage of truck AADT/ % 8.254 5.982 0 6.422
Speed limit/(km - h~!) 88. 67 13.99 8 128
Rainfall/m 0.872 0.267 0.580 1.194
Distance to the nearest hospital/km 10. 66 7.832 0.310 22.36

Fig.2 Distribution of hospitals in Austin
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Fig.3 Distribution of annual rainfall in Austin

3 Estimation Results and Discussion

This section discusses the results of the associations be-
tween the contributing factors and the crash counts on ma-
inlanes in Austin. Tab. 2 shows the parameter estimates
of the CAR model for crash counts, based on a total
number of 5 000 draws in WinBUGS.

The association between crash exposure ( VMT) and
crash rates is estimated to be nonlinear ( average exponent

7 =0. 658 for mainlanes) , which follows prior expecta-
tions. After controlling the exposure variable ( VMT) ,
other covariates regarding crash rates are estimated,
which can be seen in Tab. 2.

Elasticities for total crash counts and fatal crash counts
are computed as the average percentage change in the
mean crash rate per 1% change in the k-th variable. As
shown in Tab. 2, crash counts are estimated to have a sta-
tistically and practically significant spatial autocorrelation
coefficient of 0. 624 (that is o =0.624). The number of
lanes, curve length, AADT per lane, and rainfall have
positive impacts on the mean crash rates for mainlanes,
while the remaining variables all exhibit negative impacts
on the mean crash rates. The elasticity of - 0. 123 is
found to be that of the curve indicator variables, implying
that, holding everything else constant at their means, the
mean crash rate is estimated to drop by 0. 123 when the
indicator variable switches from O to 1. The result con-
firms that the roadway curvature has negative effects on
crash rates, which is consistent with the findings of some
other studies .

Interestingly, the speed limit on mainlanes exhibits
negative mean elasticities, implying that higher speed
limits are associated with lower mean crash rates, as
found in Ref. [4]. However, the speed limit has a posi-
tive effect on fatality rates, as shown in Tab. 2. Rainfall
intensity is estimated to be positively associated with
crash rates, and an increase of 1% rainfall will result in
an increase of 8. 622 in crash rates and an increase of
0.283 in fatality rates. As discussed previously, the dis-
tances to hospitals rarely appear as contributing factors in
the crash modeling literature. It is found that the distances
to the nearest hospitals have a negative impact on the
mean crash rates, which suggests that shorter distances
lead to higher crash rates, however, as expected, positive
associations with fatal crash rates ( presumably due to
more severe collision impacts at higher speeds and time
lost in transporting crash victims to an emergency room).



Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods 99

Tab.2 Estimation results of CAR-NB model for crash and fatal counts

Variable Mean coefficient Standard deviation Pseudo T-statistics MC error Elasticity (total) Elasticity ( fatal)

Average shoulder width/m -0.063 0.021 -0.243 0.003 —-0.048 -0.005
Number of lanes 1.535 0.737 5.346 0.003 0.408 0.123
Median width/m -0.038 0.078 -0.709 0.002 -0.032 -0.007
Indicator for curvature -0.442 0.218 -2.364 0.002 -0.123 -0.034
Curve length/km 2.672 0.903 4.532 0.003 0.105 0.029
Degree of curve/(°) -0.162 0.084 -0.677 0.002 -0.018 -0.005
AADT per lane/(veh - d=') 0.007 0.035 0.318 0.000 0.173 0.083
Percentage of truck AADT/% -0.248 0.138 -0.844 0.003 -0.194 -0.034
Speed limit/(km + h™!) -0.308 0.988 -5.306 0.002 -2.802 0.708
Rainfall/m 0.138 0.027 0.387 0.003 8.622 0.283
Distance to the nearest hospital/km -0.109 0.052 -0.233 0.002 -0.148 0.072
a 0.624 0.382 0.253 0.003

T 0.658 0.134 0.531 0.002

[4 1.284 0.556 2.408 0.002

DIC 865.72

In this study, the CAR-NB model is compared with
another spatial model ( CAR-Poisson) and some aspatial

models ( NB, zero-inflated NB and zero-inflated Pois-
son) , as shown in Tab. 3.

Tab.3 Comparison of results using aspatial models and spatial models

Measures CAR-NB CAR-Poisson NB Zero-inflated NB Zero-inflated Poisson
DIC 865.72 1 858.72 1522.67 1 032.54 1276.08
Mean LR -432.63 -1072.84 -872.85 -693.83 -764.27
Moran’s I of 0.012 0.393 0.225 0.152 0.27

residuals (P> |z| =0.044) (P> |z] =0.017)

(P> |z =0.308)

(P> |z =0.036) (P> |z =0.075)

The deviance information criterion (DIC) , as a gener-
alization of the Akaike information criterion ( AIC), can
be used to compare the goodness-of-fit and complexity of
different models estimated under a Bayesian framework.
The DIC equation is

DIC =D(6) +2p,=D +p,

where D(0) is the deviance evaluated at  which is the
posterior mean of the parameters; p,, is the effective num-
ber of parameters in the model; D is the posterior mean
of the deviance statistic D(§). With regards to the model
superiority and complexity, the lower the DIC, the better
the model ™. Tab. 3 also presents the log likelihood val-
ues, which are used in the likelihood ratio chi-square to
test whether all predictors’ regression coefficients in the
model are simultaneously zero. Meanwhile, Moran’s [ is
also considered, which is a measure of spatial autocorre-
lation developed by Moran"”''. Negative ( positive) val-
ues indicate negative ( positive ) spatial autocorrelation
and the values range from -1 (indicating perfect disper-
sion) to +1 (perfect correlation).

It is observed that the CAR-NB model has the lowest
DIC and Moran’s I of residuals among these tested mod-
els. Meanwhile, mean log likelihood values of the CAR-
NB model are the largest. The statistical tests suggest that
the CAR-NB model is preferred over the CAR-Poisson,
NB, zero-inflated Poisson, zero-inflated NB models due
to its lower prediction errors and more robust parameter
inference. It can be found that the negative binomial
models in Tab. 3 are better than the Poisson models due to
the fact that overdispersion actually exists in the data.

4 Conclusions

1) Statistical tests of DIC, log likelihood and Moran’s
I suggest that the CAR-NB model is preferred over the
CAR-Poisson, NB, zero-inflated Poisson, zero-inflated
NB models, while the negative binomial models are bet-
ter than the Poisson models.

2) The association between crash exposure ( VMT)
and crash rates is estimated to be nonlinear (average ex-
ponent 7 =0. 658 for mainlanes) , with crash rates effec-
tively falling as VMT rises.

3) The number of lanes, curve length, AADT per
lane, and rainfall have positive impacts on crash count,
while the remaining variables all exhibit negative impacts.

4) The distances to the nearest hospitals and the speed
limit have negative associations with segment-based crash
counts but positive associations with fatality counts, pre-
sumably as a result of time loss during transporting crash
victims and worsened collision impacts at higher speeds.
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