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Abstract: The nonlinear mixed-effects model with stochastic
differential equations (SDEs) is used to model the population
pharmacokinetic (PPK) data that are extended from ordinary
differential equations (ODEs) by adding a stochastic term to
the state equation. Compared with the ODEs, the SDEs can
model correlated residuals which are ubiquitous in actual
pharmacokinetic problems. The Bayesian estimation is
provided for mixed-effects
stochastic differential equations. Combining the Gibbs and the
Metropolis-Hastings algorithms, the population and individual
parameter values are given through the parameter posterior
predictive distributions. The analysis and simulation results
show that the performance of the Bayesian estimation for
mixed-effects SDEs model and analysis of population
pharmacokinetic data is reliable. The results suggest that the
proposed method is feasible for population pharmacokinetic
data.
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nonlinear models based on

opulation pharmacokinetic (PPK) models play a piv-
P otal role in quantitative pharmacology study. They
combine the classic pharmacokinetic ( PK) analysis with
population statistical models, which make them able to
investigate the determined factors of drug concentration in
patients group quantitatively, to guide the adjustment of
administration and to provide comprehensive quantitative
information for a more rational and effective clinical ad-
ministration regimen. In recent years, with the trend that
model-based drug development (MBDD) is promoted and
strongly advocated by the FDA, the population pharma-
cokinetic theory and practical research have been greatly
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developed.

Nonlinear mixed-effects modeling ( NONMEM) has
been proved to be a kind of widely used and effective tool
for describing the pharmacokinetic ( PK) and pharmaco-
dynamic (PD) properties of drugs''”'. The flexibility of
modeling correlation structures, with the total variation
separated into inter- and intra-individual variation contrib-
utes to the rapidly growing quantity of nonlinear mixed-
effects models. This modeling approach usually leads to
more accurate estimation of population parameters, espe-
cially in pharmacokinetic/pharmacodynamic ( PK/PD)
models including random effects. However, the tradition-
al nonlinear mixed-effects models are most frequently
based on ordinary differential equations (ODEs), assum-
ing that the inter-individual variation is independent with
the measurement errors, which means that the residuals
are uncorrelated, ignoring the parts of the related dynam-
ics that we cannot predict or explain. This assumption is
well-functioning to the expected distribution of assay er-
ror, but when other sources of error appear in the distri-
bution error, a good estimator cannot be obtained in the
case of ignoring the correlation which is between the
structural model parameters”” . In fact, in the actual phar-
macokinetic problems, correlations between residuals are
ubiquitous, the result may not be obtained exactly under
the basic statistical assumption in PK modeling'*’. The
NONMEM" is the most commonly used software for
PK/PD analysis using nonlinear mixed-effects models,
and it is possible to deal with correlated residual errors
using an AR model'. The simulation results show that
the introduction of a correlated residuals model may lead
to better estimates of the inter-individual variations and
the structural parameters.

The other approach to modeling correlated residuals is
stochastic differential equations ( SDEs) in the model set-
up. SDEs are an extension of ODEs and facilitate the
ability to split the intra-individual error into two funda-
mentally different types: One is a serially uncorrelated
measurement error, which is mainly caused by operation
mistakes; the other is system error, which may be caused
by mis-specified models or true random behavior of the
system. This model structure includes the statistical func-
tion of the AR model, but it is more flexible with respect
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to specifying models for different residuals. Some PK/PD
modeling books also show that the adoption of the nonlin-
ear mixed-effects models based on SDEs rather than
ODEs may be more appropriate to model intra-individual
variations'®' .

However, estimating parameters in nonlinear mixed-
effects models with SDE is a difficult problem and not
straightforward, except for simple cases. A natural ap-
proach would be likelihood inference, but the transition
densities are rarely known, and thus the explicit likeli-
hood function is usually hard to write. Actually, there is
hardly any theory for SDE models at present. Kristensen
et al. ! proposed the maximum likelihood method and
maximized a posteriori to estimate the parameters in PK
models with SDE; however, they only focused on single
subject modeling where no inter-individual variance com-
ponents were estimated. Overgaard et al. '*' suggested ap-
plying the Kalman filter to approximate the likelihood
function for a SDE model with a nonlinear drift term and
a constant diffusion term. Tornge et al. "’ made this algo-
rithm to be used in NONMEM for estimating SDEs, but
the NONMEM implementation cannot be used to form
Kalman smoothing estimates, which is an important fea-
ture of the SDE approach, where all data is used to give
optimal estimates at each sampling point.
al. " proposed a Bayesian inference to analyze growth

Donnet et

curves using mixed-effects models based on stochastic dif-
ferential equations and obtained good results. Struthers et
al. """ applied the Bayesian method to the multicenter
AIDS cohort study. Inspired by these, we introduce the
Bayesian inference to pharmacokinetic models, estimate
the parameters in the nonlinear mixed-effects models
based on the stochastic differential equation and help to
direct the clinical test.

The present work describes the implementation of SDEs
in a nonlinear mixed-effects model with parameters esti-
mation performed by the Bayesian analysis.

1 Models and Notation

1.1 Nonlinear mixed-effects model based on ordinary

1, ..., n, be the true observations. Here, y, is measure-
ment for individual i at time t;s n is the number of indi-
viduals and #, is the number of measurements for individ-
ual i. Traditional nonlinear mixed-effects models usually
model this process by the nonlinear mixed-effects model
based on the ordinary differential equation. Formally, the
classical nonlinear mixed-effects model is written as

ofCe, 1)
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where f is the possibly nonlinear function and ¢ =
(¢,) <ic, are the individual parameter vectors. ¢, are as-
sumed to be independently and identically normally dis-
tributed with expectation y and variance (2. ¢, are the
measurement errors, and they are also assumed to be in-
dependently and identically normally distributed with null
mean and variance .

1.2 Nonlinear mixed-effects model based on stochastic
differential equation

Under the framework of ordinary differential equations,
noise is only introduced through the measurement equa-
tion (see Eq. (2)). This allows the measurement noise
term to absorb the whole error due to model miss-specifi-
cation or true random fluctuations of the states that may
ignore the correlated residuals. Considering the correlated
residuals, a stochastic process is added to the state space
model (see Eq. (1)). Such that the nonlinear mixed-
effects model based on SDEs can be written as

dZ;(QD,) :F(217 ng t) dl+r(z/’ goi’ ')’Z)sz
Z(t=0) =Z,(p) (4)
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where I'( X,, ¢, yz) dW, is called the diffusion term and
describes the stochastic part of the system; W, is the
standard Wiener process defined by w, —w, ~N(0, |1, -
t, | I). F(X,, ¢,1)dtis called the drift term and describes
the deterministic part. The stochastic dynamics of the sys-
tem is defined by the drift and diffusion terms together.
In the nonlinear mixed-effects model based on SDEs

(see Egs. (4) to (6)), the total variance is distinguished
into three fundamentally different noises: the inter-indi-
vidual variability (2 describing the individual difference,
the system noise y” reflecting the random fluctuations
around the corresponding dynamic model, and the meas-
urement noise ¢~ representing the uncorrelated residuals
originating from measurement assay or sampling errors.

2 Bayesian Estimation

2.1 Prior specification

The Bayesian approach allows prior distributions to be
incorporated with the likelihood function to evaluate the
posterior distribution of the population parameters (pu,
0,0, yz in the SDE model. Thus the first step is the
choice of the prior distributions. Usual diffuse prior dis-
tributions can be chosen but the resulting posterior distri-
butions may not be proper. Therefore, we propose to use
standard prior distributions suggested by Cruz-Mesia and
Marshall'"*' :

prior prior)

M~ N(m ™, vp k=1,2,...,p
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Q' ~W(R.p+1) /o’ ~T(al™. ") (7)

where W and I'" are the Wishart distributions and Gamma
distributions, respectively. We select a uniform prior on
¥*. In practice, the specification of hyper parameters
ml", v R, o™, B may be very difficult. Therefore,
we choose the non-informative priors for the hyper param-
eters.

2.2 Posterior computation

For the ODE model (see Egs. (1) to (3)), the Gibbs
sampling algorithms are proposed in Ref. [13]. These al-
gorithms will not be detailed here. For the SDE model,
(see Egs. (4) to (6)), we propose to use the Gibbs algo-
rithm, including the sampling of the auxiliary random
variables ¢, and vector X, of realizations of process X, for
each individual at each observation time. Let X = (X,
oy X)) e RV *D denote the vector of n realiza-
tions. Hence the Gibbs sampling algorithm for the SDE
model is outlined as follows:

Step 1 Initialize the iteration counter of the chain k =
1 and start with initial values o ", y*”, u'”, o', X'
Step 2 Obtain o *“, y*“, u, ©*, X from
0_—2(k—1) , ﬂy2(k71) ’/'L(kfl) , gD(kfl) , X(k—]) .

Step 3 Change k to k + 1 and return to Step 2 until
convergence is reached.

In the case when the SDE has an explicit solution, we
describe an easily implemented Gibbs algorithm. When
the conditional distribution of the parameter has no explic-
it form, we propose to approximate it using the Metropo-
lis-Hastings random walks.

3 Model Used for Simulation
3.1 Classical one-compartment PK model

We shall simulate experiments using a one-compart-
ment PK model, and the compound metabolism is mod-
eled by the following single exponential attenuation mod-
eling:

dZ,_ taZ
ar -~ 4

(8)

In classical mixed-effects models, the process is mod-
eled by a deterministic function, depending on individual
random parameters. Formally,
mixed-effects model is written as

the classical nonlinear

logy, =logZ, —ka;t + ¢, &; s N(O0, )
i=1,2,...,n;j=0,1,....n,
ka, ~ N(ka, aiu)

i=1,2,....n (9)

For simplicity, we model on the logarithm of the noisy
observed measurements.

3.2 Stochastic one-compartment PK model

We propose to introduce a stochastic term in the ODE

model( see Egs. (9)) and extend it to the SDE model with

the volatility function I'(Z,, ¢, y*) =yZ,.
dzZ, = —ka,Z,dt +yZ,4dW, (10)

Set X, = log(ZI.j), and by Itd’s formula, we obtain a
Brownian motion with linear drift:

dx, = - (ka,. +%‘yz)dt+ydW, (11)
with solution
1,
XII:X[.O_(kai-F? )t+’yW1 (12)

By discreting the SDE, the realization X, of the SDE is
Markovian:

1
X, | X ~N( X _(kai +772)(t::/ ~1,.).7° (1, _tiz’—l))

X o =logZ, (13)

Therefore, the SDE model on the logarithm of data is
defined as

(logy, logy,, ..., logym,)T =(X; 0, X, 15 ""Xi,n,)T +e,
€ I'Lj N(O’ O-ZIn,H)
(X,,, ...,X[,n,)T =
1 1, T
(X"vo - (kaf +?’)’ )til’ D (kai +7)’ )tin,) tn,
n,' = N(O,¥’T), T, =(min(t,,1,)) .,
ka, ~ N(ka, 7},) (14)

3.3 Posterior computation and inference

We propose the condition posterior distribution for the
nonlinear mixed-effects model based on the SDE in de-
tails. The prior distributions of the parameters to be esti-
mated are defined as

ka - N( mi);inr’ vg:lior)
1/0_ia - F( (Xpriur’Bprior)
1/0_2 - F( cpriur’ dprior)

Then the posterior distribution of the parameters is writ-
ten as
X‘- - N( mi(’)st’ Vi(’)st) , V?)S[ — (0_ 721n’ + 7—2 Tifl) -1
mi(,m = Vi(,m g 72( logy,, ..., IOgym,) Tt Y 72T[71/-'Lx‘]
(15)
where

1
My, =X~ (ka" +772)(ti1’ s tin,)T
ka, = NOmZ ), v =

. 117!
[(z,.o, e 1) G (s s 1) +—2]

O ta



Bayesian analysis for mixed-effects model defined by stochastic differential equations 125
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The posterior distributions of y* have no explicit form,
so we use the Metropolis-Hastings random walks. The
Gibbs algorithm convergence is ensured by the classical
convergence theorem proposed by Carlin and Louis'",
the convergence of the Metropolis-Hastings algorithm is
ensured by the theorem proposed by Mengersen and

Tweedie” .
3.4 Simulations

To check the estimators when a simulation study is per-
formed, we simulate datasets mimicking the one-compart-
ment PK model with n =10 individuals and »n, = 10 meas-
urements. For all simulations, the sampling time period
of the simulation interval is 5 and the observation points
are obtained at equidistant time points depending on n,.
The initial values for population parameters are ka =0. 7,
o, =0.01, ¢’ =0.04,y" =0. 04. 500 datasets are gener-
ated from the mixed-effects model with SDE (' see Egs.
(14)). On the simulation datasets, parameters are esti-
mated (see Eqgs. (15) to (19)). We choose 10 000 itera-
tions to make sure the convergence of the Gibbs algo-
rithm. Estimators are obtained as the expectation of the
parameter posterior distribution of the last 5 000 simulated
trajectories of the SDE generated during the Gibbs algo-
rithm. The true values and estimators are reported in
Tab. 1, where the 95% credibility intervals are given in
brackets. The results are presented in Fig. 1. Fig. 2 shows
the basic goodness-of-fit graph for simulation data. The

solid lines are the lines of identity. From the results, we
can conclude that the parameters are well estimated.

Tab.1 Parameter estimation and 95% credibility interval

Parameter True value  Estimator (95% credibility interval)
ka 0.7 0.7132(0.6875,0.7449)
o, 0. 01 0.0117(0.007 8,0.018 3)
o’ 0.001 6 0.001 8(0.001 3,0.0020)
7 0.04 0.0429(0.0363,0.046 7)
10~1§
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Fig.1 The blood concentration vs. time in simulation case
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Fig.2 Basic goodness-of-fit graph for simulation data. (a) Ob-
served vs. population predicted values; (b) Observed vs. individual
predicted value

4 Application to Metoprolol Tartrate Dissolution
Data

The method is used to model the Metoprolol Tartrate
dissolution data taken from Polli et al'”. Complete data
is the percentage of released drug of four types of tablet
formulations of 100-mg Metoprolol Tartrate, and each ex-
periment is repeated six times. The data were also ana-
lyzed by Lansky et al. using the fractional differential rate
equation model in 2003 and 2004'”"™ . They found that
the slow dissolving test formulation was the closest to an
exponential behavior, which is used here to illustrate the
methods. We only use the data up to 45 min.
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The percentage of Metoprolol that has not yet dissolved
is modeled as Eq. (14), where y is the measurements for
experiment i at time point j. Estimators and their standard
deviation are reported in Tab. 2. The estimator of ka is in
agreement with comparable values found in Ref. [ 18].
From Tab.?2, we see that there is clear difference in the
performance of different methods. The SDE method per-
forms better than the fractional differential rate equation.
Fig. 3 shows the percentage of Metoprolol that has not yet
dissolved data and the prediction data.

Tab.2 Parameters estimations for Metoprolol Tartrate dissolu-

tion data
Estimator by stochastic Estimator by fractional
Parameter . . . . .
differential equation(std) differential rate equation( std)
kd 0.023 2(0.0002) 0.024(0.039)
yz 0.074 (0.009) 0. 08(0.005 4)
o 0.014 (0.01)
o’ 0.041 (0.025)
1101
100 o Observation
< 90 + Prediction
% 80
=
% 701
B 6ot ]
5]
2 50t
o 8
S 40r
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g 30+
= 20+
10f
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Fig. 3
and the prediction data

Percentage of Metoprolol that has not dissolved data

From Fig. 3, we can conclude that the predicted trajec-
tory is in good agreement with the actual data. The credi-
bility interval includes most of the actual data, implying
the feasibility of the Bayesian approach to nonlinear
mixed-effects models based on the SDE, and the Bayes-
ian inference has a good practical application value.

5 Conclusion

We propose a Bayesian approach to nonlinear mixed
models defined by stochastic differential equations. These
models are the extension to the classical nonlinear mixed-
effects models whose error structures are too restrictive to
model some unexplained processes. The introduction of
the SDE model results in a clear validation of the model
which is not the case in the standard model, by adding
the new stochastic term. The proposed model is proved to
be useful for the pharmacokinetic modeling. An interest-
ing area for future research is the exploration of the model
with covariate. Moreover, the extension of this work to
multidimensional SDEs would also be an interesting work.
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