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Abstract: In order to reduce the storage amount for the sparse
coefficient matrix in pre-corrected fast Fourier transform
(P-FFT) or fitting the Green function fast Fourier transform
(FG-FFT), the real coefficients are solved by improving the
solution method of the coefficient equations. The novel
method in both P-FFT and FG-FFT for the electric field
integral equation ( EFIE) is employed. With the proposed
method, the storage amount for the sparse coefficient matrix
can be reduced to the same level as that in the adaptive integral
method (AIM) or the integral equation fast Fourier transform
(IE-FFT). Meanwhile, the new algorithms do not increase the
number of the FFTs used in a matrix-vector product, and
maintain almost the same level of accuracy as the original
versions. Besides, in respect of the time cost in each iteration,
the new algorithms have also the same level as AIM (or IE-
FFT). The numerical examples demonstrate the advantages of
the proposed method.
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he integral equation (IE) formulation in conjunction
T with the method of moments (MoM) is a popular
tool for the analysis of electromagnetic scattering from
and/or radiation by an object. However, even using an
iterative method, O(N®) operations per iteration is also
needed, where N is the number of unknowns. Thus, the
application of the tool to electrically large complex struc-
tures is restricted.

Many fast algorithms have been proposed to speed up
the evaluation of matrix-vector products and to simultane-
ously reduce the memory requirement. Here, we focus on
the FFT-based methods in which the FFT is employed to
speed up the matrix-vector products.

The CG-FFT is the pioneer of the FFT-based method.
After that,
The idea of the AIM'" is to project the local basis func-

several advanced methods were developed.
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tions onto the node basis functions which are defined as
the nodes of a uniform Cartesian grid. The projection co-
efficients are obtained by matching the high order multi-
pole moments. The principle of the P-FFT' is similar to
that of the AIM, but the projection coefficients are ob-
tained by matching the potentials rather than the high or-
der multipole moments. P-FFT possesses higher accuracy
compared with the AIM and hence can be applied to a rel-
atively coarse grid” ™. Unlike the AIM and P-FFT, both
the IE-FFT™ and the FG-FFT" are used to represent the
Green function with the values at the nodes of a uniform
Cartesian grid. IE-FFT uses the Lagrange Interpolation,
while FG-FFT employs the fitting technique. So far, the
FFT-based methods have many applications'*”".

Generally, the AIM and IE-FFT have the same accura-
cy level™, so do the P-FFT and FG-FFT''. However,
the sparse coefficient matrices in the latter two methods
are complex matrices for non-zero frequency cases, while
those in the former two methods are always real matrices.
In other words, the storage amount for the sparse coeffi-
cient matrix in P-FFT (or in the FG-FFT) is twice as
large as that in the AIM (or in IE-FFT) for non-zero fre-
quency cases. Therefore, reducing memory requirements
for the sparse coefficient matrices of the P-FFT and FG-
FFT is a significant project.

In this paper, a method with real coefficients in both
the P-FFT and the FG-FFT for the EFIE is proposed.
With the proposed method, the storage amount for the
sparse coefficient matrix in the P-FFT (or in FG-FFT)
can be reduced to the same amount as in the AIM (or in
IE-FFT) for non-zero frequency cases. The new algo-
rithms do not increase the number of the FFTs used in a
matrix-vector product, and maintain almost the same lev-
el of accuracy as the original versions. In addition, in re-
spect of the time cost in each iteration, the new algo-
rithms have also the same amount as the AIM (or IE-
FFT). In this paper, A always denotes the wavelength in
the free space.

1 Formulation

For convenience, the original P-FFT and the original
FG-FFT with complex coefficients are now denoted by
CP-FFT and CFG-FFT, respectively. The two original al-
gorithms with real coefficients introduced as follows, are
denoted by RP-FFT and RFG-FFT, respectively. In the
following, C, denotes a box centered at ¢, of radius r,"",
and | C, | is the number of the nodes within C,.
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1.1 Projection coefficients

’s and

nu

In the CP-FFT, the projection coefficients A
K, , s are obtained by means of the following overdeter-

n,u
. . 2
mined equations'”':

Y A,.G(r,u) = J'a/;n(r’)G(rl,r’)ds’ (1)

ueC,

Z k,,G(r,u) = J

ueC, S,

[V - 4,(r")]G(r, r)ds'

(2)

forr=1,2,---,T. In Egs. (1) and (2), S, is the support
of the basis function ¢, (r) and {r,|,_, are the sample
points on a spherical surface with the center at ¢, and the
radius R, slightly larger than r,. More information can be
found in Ref. [2].

Egs. (1) and (2) can be rewritten as

AX" =@ p=1234 (3)

where A isa Tx | C,
@ (p=1,2,3,4) are all the column vectors of length T.
When p=1,2,3,

matrix defined by {G(r,,u)}.

w = X,y,2

o = {v@-sz”(r’)G(r,,r’)ds’}
When p =4,

" = {L[ v -«pn(r')]c(r,,r’)ds'}

X" (p=1,2,3,4) are all the column vectors (un-
known vectors) of length \ C,|. Whenp=1,2,3,

X7 =i Al

w=Xx,y,2
and when p =4, X" = {k, 1.
1.2 Coefficients representation

In the CFG-FFT, the representation coefficients 77, . ’s

are obtained by means of the following overdetermined
equations ;

Z”TZ,CHG(’/,”) = G(rz’q) (4>
ueC,
fort=1,2,---,T. In Eq. (4), {r, |’ are the same as
those in Egs. (1) and (2). More information can be
found in Ref. [3].
Eq. (4) can be rewritten as

AXY =" (5)

where @ is a column vector of length T and it is de-

fined as {G(r,,q)}; X is a column vector (unknown

and it is defined as {7 | .

vector) of length | C,
1.3 Real coefficients finding

Egs. (3) and (5) have the unified form as

AY =" (6)

Because A € C"*'“' and e C"', Ye C'“'"", that is

to say, the coefficients A K,, and 77, . are all com-

n,u n,u

plex numbers. In numerical practices, we find that the
absolute value of the real part of a coefficient is much
greater than that of the imaginary part. This fact enlight-
ens us to the fact that the possibility exists for replacing
complex coefficients by real coefficients.

Now, letA=A_ +jA,, and =W _+jW, . When Y
e R'“'*" is imposed on Eq. (6), Eq. (6) is equivalent
to the following form .

B o

im

Therefore, using Eq. (7) instead of Eq. (6) in P-FFT
and FG-FFT can produce real coefficients, leading to the
RP-FFT and the RFG-FFT. Here, the frames of P-FFT
and FG-FFT are unchanged, and hence the number of the
FFTs used in a matrix-vector product is unchanged also.

2 Numerical Results
2.1 Accuracy examination

To compare the accuracy of the new real coefficients
algorithms with that of the original versions, we provide
an example and examine the relative errors of the imped-
ance matrices. The relative error (RE) is defined as

RE ~ H ZMOM _ZAM || -
Iz I,

(8)
where | - | « denotes the Frobenius norm of the matrix;
the superscript AM means an approximation method,
which represents one method of the CP-FFT, the CFG-
FFT, the RP-FFT or the RFG-FFT.

Example 1 A PEC sphere with radius A

For a PEC sphere of radius A, the REs of the imped-
ance matrices from the CP-FFT, the CFG-FFT, the RP-
FFT and the RFG-FFT are examined. In this example,
the number of unknowns is 4 773. The grid spacings are
selected as h, = h, =h, =0.2), and the expansion order
is selected as M =2. The REs of the impedance matrices
from these methods are recorded in Tab. 1. It is seen that
the new algorithms maintain almost the same level of ac-
curacy as the original versions.

Tab.1 Relative errors of impedance matrices 107
Method CP-FFT CFG-FFT RP-FFT RFG-FFT
RE 3.228 3.228 3.228 3.228

2.2 Efficiency examination

Here, all the calculations are performed with double
precision. The 8-kernel CPU parallel computation is used
and the FFT codes are from the FFTW''” . In P-FFT and
FG-FFT, the grid spacings are selected to be equal,
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i.e., h,=h,=h_=h, and the expansion order is selected
as M =2. When the scattering from a perfect electric con-
ductor (PEC) object is to be calculated, the surface of
the object is always discretized with about 10 elements per
wavelength, and the RWG basis functions are applied.
Besides, the root mean square error (RMSE) of the RCS
is defined as

L
2 ‘ RCSZenchmark _ RCSI‘AM ‘ 2
RMSE = |** (9)

n

where L is the number of the azimuth angle samples, and
RCS, corresponds to the k-th azimuth angle sample.

If ¢, (4p,) is testing (basis) function, then C, (C,)
denotes the expansion box enclosing it. In this paper, an
MoM matrix element Z"™™ is a near element if and only if
the nearest distance between C, and C, is smaller than
0.1A.

2.2.1 A PEC sphere with radius 5.0A

The scattering from a PEC sphere of radius 5.0A is cal-

culated by IE-FFT, the RFG-FFT and the CFG-FFT, and

compared with the Mie series solution ( as the bench

mark ). In this example, the number of unknowns is
113 421. The bi-static RCS curves obtained are shown in
Fig. 1. It is seen from Fig. 1 that the numerical solutions
from both the RFG-FFT and the CFG-FFT agree well with
the Mie series solution, but that from IE-FFT is obviously
different from the Mie series solution in the vicinity of the
backward scattering angle. The RMSE, the time cost and
the storage amount are recorded in Tab.2, Example A.

50
\ — MoM
---- IE-FFT
40ry  ©  CFG-FFT
«  RFG-FFT
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6°/(%)
Fig.1 RCS curves of the PEC sphere with &/ =0.2A and M =2
(¢in 200, 0in ZOO, d)s =00)

Tab.2 Some data from two examples

Memory for the sparse CPU time/s
Example Method L . - - RMSE
coefficient matrix/MB Per iteration Total
IE-FFT 229.47 16.99 3044 1.01
A CFG-FFT 458.94 19.61 3429 0.21
RFG-FFT 229.47 17.20 3013 0.21
AIM 38.94 2.06 343 0.68
B CP-FFT 77.89 2.71 416 0.13
RP-FFT 38.94 1.91 339 0.13

2.2.2 A PEC folded plate
A PEC folded plate with an dihedral angle of 90°is
shown in Fig.2(a), and each sub-plate has the dimen-
sions 4. 687 51 x 6.25)\. The direction and polarization
of the incident plane wave are also shown in Fig.2(a).
The scattering from this object is calculated by AIM, the
CP-FFT and the RP-FFT, and compared with the MoM
solution (as the benchmark). In this example, the num-
— MOM
0r . CP-FFT
RP-FFT

..... AIM /’\

z(A)
- N W A

(=

o f \
Nl Ay
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ber of unknowns is 19 565. The bi-static RCS curves ob-
tained are shown in Fig. 2 (b) and a drawing of partial
enlargement is shown in Fig. 2(¢). It can be seen from
Figs.2(b) and (c) that the numerical solutions from
both the CP-FFT and the RP-FFT and the MoM solution
coincide very well, but that from AIM is obviously differ-
ent from the MoM solution at some azimuth angle sam-
ples.

MOM
o CP-FFT
% RP-FFT
- AIM

x(A) 2 0 y(A)

*/(°)
(a) (b)

Fig.2 RCS curves of the PEC folded plate with 2 =0.2) and M =2 (™ =225°, 6™ =90°, ¢° =90°).
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(a) A PEC folded plate;

(b) RCS curves of the PEC folded plate; (c¢) A drawing of partial enlargement
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The RMSE, the time cost and the storage amount are re-
corded in Tab. 2, Example B. It can be concluded from
the above two examples that in respect of both the storage
amount for the sparse coefficient matrix and the time cost
in each iteration, the RP-FFT and the RFG-FFT have the
same level as AIM (or IE-FFT).

3 Conclusion

In this paper, the modified P-FFT and FG-FFT ( called
RP-FFT and RFG-FFT, respectively) that have real coef-
ficients for the EFIE are established. Compared with the
original versions, the new algorithms maintain the same
number of the FFTs used in a matrix-vector product and
possess almost the same level of accuracy. Besides, each
of the two new algorithms needs only the same storage
amount for the sparse coefficient matrix as AIM (or IE-
FFT) ; that is, the storage amount for the sparse coeffi-
cient matrix is reduced to half the original amount of stor-
age.
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