Journal of Southeast University (English Edition)

Vol. 30, No. 3, pp. 271 —=277

Sept. 2014  ISSN 1003—7985

Compressed sensing estimation of sparse underwater
acoustic channels with a large time delay spread

Wu Feiyun'  Zhou Yuehai'

Tong Feng'  Fang Shiliang

('Key Laboratory of Underwater Acoustic Communication and Marine Information Technology

of Minister of Education, Xiamen University, Xiamen 361005, China)

(*Key Laboratory of Underwater Acoustic Signal Processing of Minister of Education, Southeast University, Nanjing 210096, China)

Abstract: The estimation of sparse underwater acoustic
channels with a large time delay spread is investigated under
the framework of compressed sensing. For these types of
channels, the excessively long impulse response will
significantly degrade the convergence rate and tracking
capability of the traditional estimation algorithms such as least
squares (LS), while excluding the use of the delay-Doppler
spread function due to huge computational complexity. By
constructing a Toeplitz matrix with a training sequence as the
measurement matrix, the estimation problem of long sparse
acoustic channels is formulated into a compressed sensing
problem to facilitate the efficient exploitation of sparsity.
Furthermore, unlike the traditional /, norm or exponent-based
approximation /, norm sparse recovery strategy, a novel
variant of approximate [, norm called ALO is proposed,
minimization of which leads to the derivation of a hybrid
approach by iteratively projecting the steepest descent solution
to the feasible set. Numerical simulations as well as sea trial
experiments are compared and analyzed to demonstrate the
superior performance of the proposed algorithm.
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sparse underwater acoustic

R ecently, there has been increasing interest towards
underwater communication in many acoustical appli-

! and

cations such as marine environmental monitoring' ™
oceanic acoustic tomography'. However, due to multi-
ple reflections, refractions and scattering, underwater a-
coustic (UWA) channels are prone to propagating along
multiple paths, which results in an excessive delay
spread'' ™. The complex nature of the propagation chan-

nel creates a challenging channel estimation problem'® for
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the R&D of high speed, large capacity, bandwidth-effi-
cient digital communications in underwater conditions'* .
The sparse structure of the channel impulse response has
long been exploited to improve the performance of chan-
nel estimation, by reducing the number of taps to be up-
dated and avoiding estimation noise created by a large
number of zero taps'®”.

The conventional FIR channel model has been widely
used for sparsity exploitation of underwater acoustic chan-
nel with different adaptive algorithms developed for selec-
tive updating of dominant taps according to certain explic-
it or implicit thresholds such as a sparse adaptive algo-
rithm™ and the NNCLMS proposed by Wu and Tong"'.
Furthermore, for time varying UWA channels, the design
of a suitable threshold to balance the computational com-
plexity and estimation accuracy is highly challenging, as
the time delay, as well as magnitude of each dominant
tap may vary significantly.

For the least squares (LS) method"""

, in the pres-
ence of channels with the large time delay spread, the re-
quirement that the length of the averaging window should
be proportional to the dimension of the channel will be
too strict for a time-varying channel like underwater ones
Meanwhile, the
computational complexity of LS-based channel estimators
will increase significantly with the number of channel
taps.

Previous research indicated that the delay-Doppler
spread function model enables efficient estimation of rap-
idly time varying underwater acoustic channels. In Ref.
[6], Li and Preisig employed the matching pursuit (MP)
algorithm and its orthogonal version OMP to achieve sim-

. . . . 11
to remain constant during this period"".

ultaneous optimization of the delay-Doppler parameter.
The projected gradient method'™” is also analyzed to esti-
mate the parameter of the delay-Doppler spread function
of underwater acoustic channels. Nonetheless, when the
total time delay spread of the underwater channel is large,
the corresponding two-dimensional parameters of the de-
lay-Doppler spread function will lead to unbearable com-
putational complexity.

Compressive sensing is becoming a frontier that has re-
cently gained much attention in the field of applied math-
ematics, system identification and signal processing. In
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this paper, motivated by its ability to resolve individual
arrivals or clusters of arrivals in multipath channels, effi-
cient estimation of long sparse underwater acoustic chan-
nels is discussed within the framework of compressive
sensing.

Most of the pervious compressive sensing sparse chan-
nel estimation investigations were designed for the OFDM
systems“‘HS] , because the DFT matrix can be convenient-
ly used as the CS measurement matrix to satisfy the re-
stricted isometry property (RIP). In view of the general
single carrier communication systems that probe the chan-
nel with a training sequence, Gohberg et al. """ pointed
out that a random Toeplitz-like matrix constructed by
training sequence also satisfies the RIP. In this paper, a
Toeplitz-like measurement matrix is employed to estimate
the long sparse acoustic channel under the compressive
sensing framework.

Furthermore, unlike the traditional /, norm or Gaussian
smoothing based approximation /, norm methods which
are generally optimized by matching pursuit (MP), itera-
tively re-weighted least squares (IRLS) " or zero attrac-
tion projection (ZAP)'”', direct minimization of a new
variant of approximate /, norm called ALO leads to the
derivation of a novel sparse reconstruction method to
yield a performance improvement in the presence of the
large time delay spread.

1 Problem Formulation

Considering the transmitted signal s(¢), received signal
y(t), time-varying channel #(t, 7) and additive noise
w(t) with delay time 7 and geotime ¢, under the assump-
tion that the channel function remains constant throughout
m samples, the discrete input-output representation can be

written as'“""
ylil = Zs[i—j+1]h[i] + wl ] (1)
Vil =y(iAD)  i=1,2,...m (2)
s[i] =s(iAr) i=1,2,....m (3)

hli] =h(iAt, 7y +(j-1) A7)
i=1,2,....m; j=1,2,...,n (4)

where 7, is the reference delay; n is the maximum time
delay sampling dimension called channel order; m is the
length of averaging windows inside which the channel re-
mains stable; s[i] and y[i] are the discrete transmitted
signal and received signal, respectively; and w[i] is the
discrete additive noise.

Defining an m x n dimensional Toeplitz-like matrix A"’
with the transmitted signal as'”

slk+n],s[k+n-1], ...,s[k+1]

A slk+n+1],s[k+n],slk+n-1], ..., s[k+2]
slk+n+m-1],s[k+n+m-=2], ..., s[k+m]

(3)

The input-output relationship at {k} time point is
shown as follows:

y(k) :A(k)h(kl +w (6)

y =lk+nl,ylk+n+1], .. ylk+n+m-11}"
(7

Y = {h[k], h[k+1], ..., h[k+m—-1]}"  (8)

where w is the white noise of the dimension m x 1.

The estimation problem of &' in Eq. (6) can be ad-
dressed by a least squares method'""”. However, the
window length m should be proportional to the channel
dimension to guarantee the stability of the algorithm. As
a result, a channel with a long time delay spread will re-
quire a large m, which may be rather restrictive or even
unrealistic if it exceeds the coherent time of the time-var-
ying channel.

The purpose of this paper is to solve a sparse h"' with
a large delay spread from Eq. (6) with a small m, which
means a fast and efficient estimation of long and sparse
channels. However, Eq. (6) will become an underdeter-
mined problem if the m x n Toeplitz-like matrix has a re-
lationship of m<n. Namely, it has more unknowns than
the number of equations.

By exploiting the sparsity contained in the channel re-
sponse, it is possible to solve Eq. (6) with m<n by for-
mulating this problem into a compressed sensing frame-
work. According to the compressed sensing theory>'",
to obtain a unique sparse solution of Eq. (6) in the under-
determined systems, the measurement matrix A should
satisfy the restricted isometry property (RIP) written as

(1-89 i< lAr| <1 +60) RIS (9

where ||k Hi is the [, norm (Euclidean norm). If §,<1,
the measurement matrix A has the capability to reconstruct
the K/2 sparse signal h stably, where K/2 sparse means
an h with at most K/2 nonzero components. In other
words, to obtain a K sparse signal , we need to obtain a
small §,,. However, it is computationally difficult to
check whether A satisfies Eq. (9) or not.

Fortunately, it is recognized that many types of random
matrices satisfy the restricted isometry condition with a
high probability'*™'. Bajwa et al.""”" examined Toeplitz
type matrices in the context of compressed sensing where
the entries of the vector generating the Toeplitz or To-
eplitz-like matrix are chosen at random according to a
suitable probability distribution. Compared to the Ber-
noulli or Gaussian matrices,
have the advantage of less random numbers being genera-
ted. Moreover, there are fast matrix-vector multiplication

routines which can be employed for sparse recovery algo-
17

random Toepliz matrices

rithms
Thus, in Eq. (6) the Toeplitz-like feature of matrix A
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means that it is possible to estimate h under the relation-
ship of m<<n by adopting a sparse recovery method with
A as the CS measurement matrix. In this sense, an esti-
mation of sparse underwater acoustic channels with a
large time delay spread is actually a compressed sensing
problem.

2 Derivation and Evaluation of the Proposed
Algorithm

2.1 New version of approximation /, norm

Theoretically, there are infinitely many / that satisfy
Eq. (6). However, in the view of the additional assump-
tion that k is sparse, there exists a unique solution, i.e.,
21 The re-

sulting sparse reconstruction problem can be expressed as

the best solution will be the sparsest vector'

min [, st [y-Anrll, <e (10)

where || || , 1s the number of non-zero elements in vector
h. Unfortunately, the problem in Eq. (10) is NP-
hard"*** and computationally intractable to solve. Gener-
ally, it is often replaced by the /, norm equation with a
convex relaxation as

min |2, st [y-Ar],<e (11)

where || || , is the sum of the absolute value of each ele-
ment in vector k. Nonetheless, previous investiga-
tions'*"! pointed out that the accuracy of /, solution ob-
tained by Eq. (11) is relatively low.

An approximation of /, norm offers another type of so-
lution for sparse recovery, and different approximation
functions such as exponential function” have been pro-
posed to adopt a control parameter to seek a tradeoff be-
tween global optimum and reconstruction accuracy. In an
attempt to try different /, norm approximations with a
tractable function for the sparse evaluation of long sparse
channel response, it is observed that the tangent function
exhibits better smooth behavior under the same step of pa-
rameter tuning compared to the exponential function
which is used to formulate Gaussian smoothing”‘”. Thus,
under the framework of smoothing [, norm we define a
different smoothing function to approximate [, norm,
called ALO, by the use of tangent function, as

nll, ~ ztanh[w] (12)
i=1 20

where (i) is the i-th element in vector k; ¢ is a variable
parameter designed to control the accuracy and the
smoothness of the approximation, which is relevant to the
noise energy in k. Smaller o leads to better approxima-
tion accuracy, while larger o will smooth the approxima-
tion curve.

In view of different mathematical behaviors of tangent
and exponential functions with respect to the correspond-

ing control parameter, in this paper the iterative solution
of the proposed ALO norm sparse recovery is derived and
evaluated for compressed sensing estimation of long
sparse underwater acoustic channels.

2.2 Derivation of AL0O norm solution

Combined with (12), the ALO norm objective function
can be expressed as

minf(h) = itanh[h(;)#]
h i=1 g
ming(h) = [ly - AR |,

(13a)
(13b)

Regarding the direct minimization of the ALO norm in
Eq. (13a), the gradient descent recursion is

afCh,)
e T TH Ty
J

(14)

The scalar version of Eq. (14) is written as

By () =y () —Myhi:)[l —tmﬁl(ﬁéf%géjl)z]
Visisn s

where u, is the step-size parameter at the j-th iteration.
Initially the value of ¢ should be large enough to facili-
tate the globally optimal solution, to be extreme, when o
— o we get tanh (7}1(12)112(1) )ZHO. i.e., we get h =
o
A" (AA™) 'y with the extremely large o. Therefore, the
initial solution of & is set as A"(AA") ~'y for Eq. (13a).
With the convergence of gradient descent recursion of
Eq. (14), the value of ¢ should be gradually reduced to
improve the accuracy of solution. Thus, we use a decrea-
sing sequence of [o,, 0,, ..., o,], the [-th element of
which is iteratively reduced according to o,,, = B0, at the
[-th iteration, where O <8 <1 is a shrinking factor. The 8
parameter denotes the intensity of sparse constraint, the
increase of which will result in a faster convergence rate
as well as large steady-state misalignment. So B is deter-
mined by the trade-off between the convergence rate and
adaptation accuracy. To match with the shrinking trend of
o5 p; is adjusted according to w, =,uoaf,
constant. To ensure the initial value of ¢ large enough to
facilitate the globally optimal solution, initially we set a
value of o, =2max(h,). Then, we obtain

h,(i)h;(i) )2]

g;

where y, is a

By (D) =hy (i) =phy (i) [ 1 —tanh(

Vi<i<n

(16)

Parallel to the gradient descent recursion of the ALO norm
sparse recovery, the minimization of the estimation error
in Eq. (13b) is achieved by projecting the ALO norm so-
lution of Eq. (16) on the channel estimation feasible set

H={h|Ah =y} as
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h; =h; - A"(AA") "' (y - Ah) (17)

The proposed ALO norm compressed sensing channel esti-
mation algorithm is described using pseudo-codes as fol-
lows:

Step1 Given the end condition for algorithm iteration
o, iteration times J, complex-value transmission signal
sequences constructed Toeplitz-like matrix A, received
signal y.

Step 2 When o; > o, runs Eq. (16) and Eq. (17)
for J times, respectively.

Step 3 Updating o,,, =80,

Step 4 Check if o, > 0, is satisfied, if yes, jump to
Step 5, otherwise, jump to Step 2.

Step 5 Output solution of h.

2.3 Performance metrics

In numerical simulations, with a known and fixed & the
channel estimation signal to noise ratio ( SNR) can be
used as performance metrics to measure different algo-
rithms, which is defined as

2
2k

SNR = 10log,, AR (18)
where £ is the estimate of & by different algorithms.

Furthermore, considering that the physical acoustic
channel is unknown and time-varying, in the sea data ex-
periment, the performance of the channel estimation algo-
rithm was evaluated by the output of a channel-estima-
tion-based equalizer. That is, initially the channel re-
sponse was obtained by the proposed and reference algo-
rithms with a fixed number of training sequences. Then
the obtained channel estimates were used to construct a
correlation based decision feedback equalizer (DFE) = to
achieve symbol recovery of the following sequence, the
constellation as well as bit error rate of which will be used
as performance metrics of channel estimation.

In view of time variations of the physical sea channel,
the length of the training sequence is relatively short with
respect to the channel dimension to ensure the channel re-
maining constant during the corresponding period. The
channel time variations of the following sequence aere
tracked and accommodated by the adaptive unit of the
correlation based equalizer'™ .

3 Numerical Simulation

In this section, to demonstrate the performance of the
proposed algorithm,
formed. The acoustic source is positioned at 100 m
depth, and the receiver is located at 120 m depth with
210 m range of the source, as illustrated in Fig. 1. The

numerical simulations are per-

depth of the shallow ocean is 200 m and the bottom is as-
sumed to be perfectly rigid. The acoustic velocity is a
constant, ¢ =1 500 m/s. Based on the acoustic ray prop-

. 24
agation model"”"

plotted by the Bellhop Toolbox as shown in Fig. 1, which
is a typically long sparse channel. The Bellhop Toolbox
is a highly efficient ray tracing program written in Fortran
as part of the Acoustic Toolbox'*'.

, the channel impulse responses were

0 50 100 150 200 250
Range/m

Fig.1 Acoustic ray propagation model for a shallow water en-
vironment

The baseband quadrature phase shift keying ( QPSK)
signal with the symbol rate f, =4 kBd is adopted as the
transmitted sequence. The sampling interval of the delay
and geotime is taken as the symbol duration, which is de-
fined as T,. As shown in Fig. 2, the multipath channel
impulse response generated by the Bellhop Toolbox ex-
hibits a typical sparse pattern as well as a long time delay
spread spanning a range of 500 symbol durations. The re-
al part and imaginary part of transmitted bit are generated
according to standard uniform distribution on the open in-
terval (0,1). The output signal is generated by convolu-
tion of channel coefficients with the transmitted sequence.
Then one can obtain the input-output relationship accord-
ing to the formulation described in Eq. (6). In this nu-
merical simulation, we set m = 600, 500, 400 and n =
2 760 to take an obvious relationship of m<n.

1.0p
0.9¢
0.8f
0.7}
0. 61
0.5¢
0.4r
0.3f
0.2
0.1f
0

Channel coefficient

40 60 80 100
Time delay /ms

120 140

Fig.2 Simulated channel response

The parameters of the proposed ALQ algorithm are set
as u, =2, J=3, B=0.8. The performance of the tradi-
tional sparse recovery methods including OMP, ZAP,
IRLS as well as the iterative least squares QR (LSQR) al-
"I"are compared to that of the proposed method.
It is noted that while the reference sparse recovery algo-

gorithm'
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rithms solve the channel within the compressed sensing
framework, the LSQR algorithm was implemented to esti-
mate the channel in a classic least squares manner to offer
a comparison result. All the numerical simulations were
operated under the same conditions, performed in a Mat-
lab 7 environment using an Intel Core i3-2120 CPU (@3.3
GHz) with 4 GB of memory under Win 7 operating
system.

The performances of different algorithms were evalua-
ted by SNR metrics, which are shown in Tab. 1. One can
see that in this simulation, as the LS algorithm does not
utilize any sparsity of the acoustic channel, the parameter
configuration of m<<n degrades the performance of the
channel estimate, with the worst SNR result among all
the reference algorithms. One may also observe that,
while the ZAP and OMP both outperform the IRLS, the
proposed ALO method achieves a significant higher SNR
result than OMP, ZAP, or IRLS algorithms do.

Tab.1 The performance of different algorithms dB

SNR
Algorithms

m =1 200 m =600 m =500 m =400
LS 35.66 3.32 2.91 2.10
IRLS 39.71 31.78 21.35
OMP 53.21 31.84 28.41
ZAP 53.51 46.14 28.64
ALO 58.86 57.85 54.26

In addition, to offer a performance reference under ide-
al parameter configurations, LS estimation was also per-
formed with m =1 200 to produce an SNR of 35.66 dB as
indicated in Tab. 1, verifying a predictable performance
improvement. Note that in the numerical simulation, the
channel is fixed, thus increasing m will not lead to per-
formance degradation caused by channel variation.

It is recognized that the performance of the compressed
sensing algorithms will outperform traditional methods
such as the LS method on the condition that the target sig-
nal is sparse enough. In other words, the superiority of
the compressed sensing algorithms will vanish if the sig-
nal is not sparse. For the underwater acoustic channels
created by multipath propagation, the sparse assumption
of the CS algorithm is generally easy to meet. Compared
with the classic CS methods such as OMP and ZAP, the
performance enhancement of the proposed ALO algorithm
may be interpreted in different approximation methods to /,
norm.

4 At-Sea Experiment

In this section, at-sea experimental results are presen-
ted to verify the effectiveness of the proposed algorithm.
The modulation format is quadrature phase-shift keying
(QPSK) with a bit rate of 8 kbit/s and a carrier frequency
of 16 kHz. The bandwidth of the transducer couple is 13
to 18 kHz. The original sampling rate of the received data

is 96 kHz. The sampling interval of the delay and
geotime is taken as 1/4 of the symbol duration to provide
robustness in the carrier phase fluctuations in the under-
water acoustic channel.

The experimental field data was collected from a shal-
low water acoustic channel with slight wind conditions at
a semi-closed gulf near Qingdao, China. The depth of
the experiment area was about 15 m. The transmitting
transducer was suspended to a depth of 4 m from a boat,
with the receiving transducer suspended to a depth of 4 m
at the pier. The distance between the transmitter and re-
ceiver was 200 m. The raw received signal recorded dur-
ing the sea experiment had an SNR of 14 dB. The chan-
nel estimation and equalization algorithm was implemen-
ted in Matlab and used for off-line processing of the ex-
perimental data.

In the experiment, the algorithm parameters for chan-
At = At =1/16
ms, m =400, n=1 200, with the parameters of the pro-
posed ALO algorithm set as u, =2, /=3, B=0.8.

For the performance comparison, OMP, ZAP, IRLS,
the proposed method as well as the LSQV algorithm were
utilized to estimate the experimental shallow water acous-
tic channel and then use the obtained channel to design a

nel estimations were taken as follows:

correlation based equalizer.

Furthermore, as the purpose of the channel estimation
is to provide the channel response to optimize the channel
equalizer, the accuracy of the channel estimation will de-
termine the performance of the equalizer, as well as the
communication quality. Thus, the channel responses ob-
tained in the experiment with the proposed and reference
algorithms are used to construct a correlation based deci-
sion feedback equalizer ( DFE) ' to achieve symbol re-
covery. By coupling the passive phase conjugation ( PPC)
with a single-channel DFE, the correlation based decision
feedback equalizer is capable of improving the adaptabili-
ty to different channels™'.

Unlike the normal PPC processor that requires a vertical
array of many receivers to yield spatial diversity, the pur-
pose of the experiment was to evaluate the performance of
Also,
PPC was adopted by only employing a single channel im-
pulse response obtained with the channel estimation algo-
rithm, which means that no spatial diversity was exploi-
ted in the performance comparison and evaluation. The
length of the single channel PPC matched filter is the
same as that of the channel estimator, set as n =1 200 to
cover the range of multipath delay spread. The purpose of
the RLS updating single-channel DFE is to remove the re-
sidual inter symbol interference (ISI). The filter length of
the RLS updating forward and backward is set to be 24,
12 respectively, with the RLS forgetting factor of 0. 998.
Both the PPC and the DFE work at 1/2 symbol rate. The
bit error rate( BER) was adopted to evaluate the perform-

channel estimation. a simplified single-channel
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ance of the proposed and reference algorithms.

For the implementation of the correlation-based equal-
izer under time-varying shallow water channel, we use an
initial estimate of the channel impulse response obtained
by the proposed and different reference algorithms as the
coefficient of the PPC matched filter, and then utilize the
RLS updating DFE to address the residual ISI and accom-
modate the temporal variation of the physical channel.
The initial estimate of the n =1 200 order sparse acoustic
channel was obtained by the first m =400 samples of re-
ceiving sequence and then set as the coefficient of the
fixed PPC matched filter for PPC processing of the fol-
lowing sequence with a length of 2 000.

The constellation outputs of the equalizer corresponding
to different channel estimation algorithms are provided in
Fig. 3, from which one may see that the LS estimator cor-
responds to a poor constellation quality, as the parameter
m is not large enough with respect to n for the LS algo-
rithm to achieve a good performance. By exploiting the
sparsity of the channel impulse response under the com-
pressed sensing framework, in terms of the estimation ac-
curacy, the compressed sensing methods generally yield
satisfactory performance compared with the LS method.
With the proposed ALO norm method, they achieve a bet-
ter constellation result than the OMP, ZAP, or IRLS al-
gorithm do. Similarly, with m =n =1 200, LS produces
an enhanced constellation, but is still inferior to ZAP and
the proposed method clearly.
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Fig.3 Scatter plots of the equalizer corresponding to different
channel estimation algorithms. (a) LS (m <n); (b) OMP; (c¢)
ZAP; (d) IRLS; (e) ALO; (f) LS (m=n)

The BER results obtained by the channel estimation
based equalizer are quantitatively shown in Tab. 2. It is
evident that the equalizer corresponding to the proposed
channel estimation algorithm yields the best BER result
among all the reference algorithms, further validating the
superiority of the proposed ALO channel estimation meth-
od to the other conventional compressed sensing channel
estimation algorithms. The LS method produces the worst
BER, which is consistent with the result of constellation
plot. Again, when m =n =1 200, the BER of the LS
method increases to 3. 18% , approaching to but still poo-
rer than that of all the CS type channel estimation
methods.

Tab.2 BER performance corresponding to different algorithms

Algorithms LS (m<n) IRLS OMP ZAP ALO LS (m=n)
BER 0.1957 0.02270.02130.0197 0.011 3 0.0318

5 Conclusion

Aimed at improving the estimation performance of
shallow sparse underwater channel with a large delay
spread, a compressed sensing estimation algorithm is for-
mulated by constructing a Toeplitz matrix with the train-
ing sequence as the measurement matrix. Unlike tradi-
tional sparse recovery strategies, a new variant of approx-
imate [, norm is introduced into the cost function of sparse
recovery channel estimation, the direct minimization of
which leads to the derivation of an iterative optimization
approach. This incorporates the steepest gradient descent
algorithm and the projection of the gradient descent solu-
tion to the feasible set. Numerical simulation and sea data
experimental results show that the proposed algorithm ex-
hibits better estimation performance than traditional meth-
ods at the presence of a sparse acoustic channel with a
large delay spread.
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