Journal of Southeast University (English Edition)

Vol. 30, No. 3, pp. 278 —284

Sept. 2014 ISSN 1003—7985

Evil-hunter: a novel web shell detection system
based on scoring scheme

3

Truong Dinh Tu"*

Cheng Guang'’

. . 1.3 - 1,3
Guo Xiaojun™ Pan Wubin

(" School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)
(*Department of Information Technology, Tuyhoa Industrial College, Phuyen 620900, Vietnam)
(* Key Laboratory of Computer Network and Information Integration of Ministry of Education,
Southeast University, Nanjing 210096, China)

Abstract: In order to detect web shells that hackers inject into
web servers by exploiting system vulnerabilities or web page
open sources, a novel web shell detection system based on the
scoring scheme is proposed, named Evil-hunter. First, a large
set of malicious function samples normally used in web shells
are collected from various sources on the Internet and security
forums. Secondly, according to the danger level and the
frequency of using these malicious functions in the web shells
as well as in legal web applications, an assigning score
strategy for each malicious sample is devised. Then, the
appropriate score threshold value for each sample is obtained
from the results of a statistical analysis. Finally, based on the
threshold value, a simple algorithm is presented to identify
files that contain web shells in web applications. The
show that
Evil-hunter can

experimental results other
approaches,

efficiently and accurately.

compared with
shells

identify web more
Key words: web shell detection; scoring scheme; malicious
code identification
doi: 10.3969/j. issn. 1003 —7985.2014.03. 004

malicious file that hackers plant on web servers
A through system vulnerabilities or web pages’ open
source to create a backdoor for them to return next time is
called a web shell. In other words, a web shell is a code
written in languages such as PHP, active server page
(ASP), Perl, Java server page (JSP) or Python, etc.,
which runs on the system and can remotely control a ma-
chine. Once the web shell is run, it provides a web Inter-
face for remote operations on the server with attacker
functionality, such as file transfers, command execution,
network reconnaissance, database connectivity, SQL

Received 2014-01-17.

Biographies: Truong Dinh Tu (1979—), male, graduate; Cheng Guang
(corresponding author), male, doctor, professor, gcheng@ njnet. edu.
cn.

Foundation items: The Science and Technology Support Program of
Jiangsu Province (No. BE2011173), the Future Network Proactive Pro-
gram of Jiangsu Province (No. BY2013095-5-03), the Program for Spe-
cial Talent in Six Fields of Jiangsu Province (No.2011-DZ024).
Citation: Truong Dinh Tu, Cheng Guang, Guo Xiaojun, et al. Evil-
hunter: a novel web shell detection system based on scoring scheme[J] .
Journal of Southeast University (English Edition), 2014, 30(3): 278 —
284. [doi: 10.3969/j. issn. 1003 —7985.2014. 03.004]

manager, etc.

The techniques used to build web applications are often
developed in languages such as PHP, ASP, Java, Py-
thon, Ruby, Perl, etc. It not only supports full functions
to access files, consoles, networks, and database, but al-
so runs and manages the process in the system. This is
quite convenient for building management applications in
the web environment.

However, this is also where the

hackers will aim to create a backdoor. One of the usual
ways to attack web servers is that the hackers use web
shells to browse files, upload tools, and run commands;
after that, they increase privileges and pivots to other tar-
gets. Thus, the role of web server managers is to ensure
the privacy and security for customers’ web pages. A web
page may contain thousands of code lines or more in each
file; therefore, it is very difficult and sometimes impossi-
ble to review the source code manually to detect malicious
files such as web shells. So, finding and detecting web
shells inside web page applications are necessary for secu-
ring websites.

There are some known tools to find web shells, such as
NeoPI'", PHP shell detector (SD) 2 and Grepm. How-
ever, these tools have some disadvantages: 1) NeoPI can
find and detect obfuscated and encrypted contents within
text and script files. However, its disadvantage is that it
cannot provide a threshold value for these indices to deter-
mine which files are web shells. Therefore, we have to
analyze and decide from the experience of experts; 2) SD
has a known web shell signature database saved in web
servers. Its disadvantage is that if a new web shell has not
been updated on a database, this tool will fail to detect it;
3) Grep is an UNIX command for searching files for lines
matching a given regular expression. However, the disad-
vantage of this method is that it does not have a list of
given dangerous functions. Thus, users must have experi-
ence and know which dangerous functions should be
found to detect web shells. Therefore, this method has
many false positives since some of these functions are also
used by legal web applications. As a result, the Evil-
hunter system is proposed in this paper to detect web
shells and overcome the above-described existing disad-
vantages.

Evil-hunter: a novel web shell detection system based on scoring scheme 279

1 Background and Related Works

1.1 Overview of web shell

A web shell is a script/code written in various web
scripting languages, such as PHP, ASP, Perl, JSP or Py-
thon, etc., which runs on the system and can remotely
control a machine. In other words, a file containing mali-
cious functionality that hackers have planted on web serv-
ers through system vulnerabilities or web pages’ open
source to create a backdoor for them to return next time is
called web shell.

There is no clear difference between web shells and
normal administration websites since they both belong to
remote control software. If it is used to sabotage the web-
site, it is a web shell; but if it is used to manage all the
web pages, it is normal management software. Only the
administrator can judge whether a remote management
webpage is behaving maliciously or not'*™' .

Classic web shell attacks: The attacker finds vulnerabil-
ities in a hosted web application and uploads a malicious
dynamic web page to a vulnerable web server; then he
uses the web shell to browse files, upload tools, and run

[6-8]

commands” . After that, he acquires privileges and piv-

ots to other targets as allowed (see Fig.1).

File servers

W1

Web server)/ ~

Vulnerable web /

application Database
Added malicious \ b
applications

(written in PHP,

ASP, ISP, Perl, etc.) .

Internet
attacker

Fig.1 The classic model of web shell attacks

Web shells can be classified into two main categories.

e Non-encrypted web shell: The source code of this
web shell is stored in apparently normal text. From the
source code files, we can see the functions used in it.

e Encrypted web shell: The source code of this kind
of web shells usually contains characters that are obfusca-
ted and not meaningful, but it still executes its features
properly. The encryption functions such as base64 _en-
code(), base64_decode(), etc.” are popular and most
attackers often use these in their web shells.

1.2 Related works

Web servers attacks are one of the most frustrating
problems for administrators. Some researchers have be-
come concerned about this threat and their strategies have
been useful for detecting malicious files on webpage ap-
plications. Behrens and Hagen'" built a project called

NeoPI, using a variety of statistical methods to detect ob-
fuscated and encrypted contents within text and script
files. However, the NeoPI offered only file statistics with
the index of coincidence, entropy, longest word values,
respectively, in order to help administrators find suspi-
cious files. It cannot decide whether the file, which has
obfuscated or encrypted contents, is a web shell or not.
Thus, the administrators need manual analyses to decide.
Luczko et al. "™ also built a PHP script called the PHP
shell detector (SD) to help with finding and identifying
web shells. Basically, the SD has a known web shell da-
tabase saved at web servers, and previously calculated the
MDS5 value in each file. This method has the disadvan-
tage that if a new web shell has not been updated in the
database, this approach will fail to detect it. Mingkun et
al. " conducted a study on the principles and characteris-
tics of ASP web shells to find a method to identify ASP
shells. Hu et al.'"
tics and mechanisms of web shells, and proposed a detec-
tion model based on the decision tree algorithm to detect
them. Rahul'”! proposed some analyses to prove that the
Anti-Virus software packages have a very poor web shell
" used the machine-learning
approach to detect malicious web pages. In general, they
analyzed malicious dynamic web pages to find important
features which are input for training the classifier or obtai-
ning the predicted class of pages.

presented a study on the characteris-

detection rate. Hou et al.'

2 Proposed Approach: Evil-Hunter

In this section, we describe a brief overview of Evil-
hunter overall and describe the components of Evil-hunter
in detail.

2.1 Overview of Evil-hunter

As mentioned previously, the web shell is viewed as a
malignant tumor for web applications on the Internet,
finding and detecting web shells are very important for
website security. The goal of the proposed approach is to
identify suspicious files containing web shells inside web
applications. To achieve this goal, we propose a system,
called Evil-hunter. The framework of Evil-hunter consists
of three main components as shown Fig.2. They are:

1) The collection of malicious signature/function sam-
ples. In this section, we collect a large set of malicious
signature/function samples that are often used in known
web shells and assign them their danger levels.

2) Scoring scheme. In this section, we describe an ap-
propriate scoring scheme for malicious signature/function
samples collected in the above section. The score range to
be used is a range of numbers depending on their danger
levels. On the other hand, in this section we also propose
one calculation method to determine the threshold value to
distinguish web shell files from benign files.

3) An algorithm for detecting web shells. In this sec-

280 Truong Dinh Tu, Cheng Guang, Guo Xiaojun, and Pan Wubin

tion, we propose an algorithm based on the above-men-
tioned scoring scheme to identify web shells. In this tech-
nique, there are two main modules: scanning and matc-
hing signature/function samples and scanning to find ob-
fuscated or encrypted contents. Moreover, in order to im-
prove the detection effectiveness of the Evil-hunter sys-
tem, we also propose another supporting module, namely
scanning and matching keywords in the blacklist.

Collect malicious signatures/|
function patterns

!

| Propose scoring scheme |

Webpage
application

| Propose algorithm for detection

| Suspicious web shell files

Fig.2 Framework of Evil-hunter

Evil-hunter starts from a set of known malicious signa-
tures/functions that are involved in malicious activities of
the web shell. Each signature/function has different dan-
ger levels, in which some signatures/functions are also
used in legal web pages. Thus, in order to assign these
danger levels, we propose a scoring method for each sig-
nature/function, as well as proposing a method to calcu-
late the threshold value to detect web shells.
step, we propose one technique to detect web shell files
based on the scoring scheme proposed above.

In the next

2.2 Components of Evil-hunter

In the following sections, we provide details for the
components of the proposed system.
2.2.1
The malicious signatures/function samples are those

Collecting malicious signatures/function samples

that attackers often use for their web shells, and are rarely
used in benign web source code'”’. These malicious func-
tions can be classified into the encoded/decoded support
functions, file system
functions, compressed functions, etc Therefore,
collecting the malicious functions is necessary to aid de-
tecting web shells.

We collect a large set of malicious signatures/functions
based on common tasks that are often used in the web
shell, such as file management functions, database server
access functions, file system functions, etc. (7.9 147161 " The
list of these malicious signatures/function samples are
stored in a XML database file, which can be easily upda-
ted for further development.

command execution functions,
[6-7,9]

2.2.2 Scoring scheme
In this section, we discuss how to assign a score for

malicious signatures/function samples and how to deter-
mine a suitable threshold value for each sample to identify
suspicious web shell files.

1) Assigning scores for malicious signatures/functions

The web application source code often uses many func-
tions, in which each function has different danger levels.
For example, system_exec() or system() are dangerous
functions that are rarely used in benign web source
®I In order to indicate the danger level for each
function, we use the scoring scheme. The scoring scheme
is proposed based on a numerical scale, such as 1-10,
where a score corresponds to low, medium, and high
danger level, (low <5, medium =5-9, and high =10).
Thus, a high score of 10 or more may indicate almost no
false positives; a medium score of 6-9 may imply a possi-
bility of some false positives and higher sensitivity while
a low score of 5 or less can imply audit level sensitivity.

code

For example, if the functions have a high danger level,
they almost do not appear in benign web application
source codes; then the score for these functions may be
assigned to 10 points or more. However, if the functions
have a medium danger level and they are sometimes used
in normal websites, then the scores for these functions
may be assigned with 6-9; and the functions that have a
low danger level may be assigned with 1-5.

The list of all the malicious signatures/functions and
corresponding scores are stored in a XML database file
(XMLDB). Thus, they can be easily altered, removed
from or added to systems for further development.

2) Determining threshold value

A threshold value is the minimum value that the system
can use to classify whether a file is a web shell or not. To
determine a threshold value for malicious signatures and
function samples, we collect a set of signatures and func-
tions based on common tasks that are often used in the
web shell, such as file management functions, database
functions, file system functions,
. After obtaining a set of necessary signatures
and functions, we complete the task of scanning for a
large amount of benign source code, and calculate the to-
tal score of the frequency of using these functions. There-
fore, we can give a suitable threshold value for each sam-
ple.

For example, in order to choose a suitable threshold
value for malicious function samples, we scan each file of
the legal web pages, count the appearance frequency of
the dangerous functions (which are stored in XMLDB) in
benign files, and calculate the total score of those files
(e.g., {ts,, ts,, ..., ts,} ={6, 8, ..., 18}. In which
ts, is the total score of the i-th benign file, and n is the
number of subfiles (e. g. js, css, PHP) that a webpage
may include. Moreover, we also scan and count the ap-
pearance frequency of those malicious functions in the
sample files containing web shells, and calculate the total

SE€rver access

7,9,15-16
etc. ' !

Evil-hunter: a novel web shell detection system based on scoring scheme 281

score for each sample file (e. g, {wts,, wts,, ..., wts, }
={30, 77, ..., 80} in which wts, is the total score of the
i-th sample file contained web shells, and m is the num-
ber of web shell files). From there, we choose a suitable
threshold value for malicious function samples, such as
Threshold_MF =20. Similarly, we can also determine a
suitable threshold value for dangerous signature sample
(Threshold_S).

To determine a threshold value for the longest word
(Threshold_LW), we conduct a scan to look for the lon-
gest word from a set of samples encrypted web shells giv-
en and a set of legal web sources. From the list of values
obtained, we decide an appropriate threshold value for the
longest word.

For example, in order to choose a suitable threshold
value for the longest word, we scan each file of the legal
web pages, meanwhile, calculate the value of the longest
. 1w} ={63,
52, ..., 82}, in which lw, is the value of the longest
word of the i-th legal file). Similarly, we also scan and

word for each file (e. g., {lw,, lw,,

calculate the value of the longest word in a set of samples
of encrypted web shell (e. g., {ws,, ws,, ..., ws, } =
{118, 5 847, ..., 208 496}, in which ws, the value of
the longest word of the i-th web shell file, and m is the
number of web shell files). Then, we choose a suitable
threshold value for the longest word, such as Threshold_
LW =100.

Based on the above-mentioned approach, in the follow-
ing section, we present an algorithm to identify web
shells.

2.2.3 Algorithms for web shell detection

To work with the above-mentioned scoring scheme, we
build an algorithm as shown in Algorithm 1 for identif-
ying web shells. There are three steps in the algorithm:
1) Scanning and matching signature/function samples
with database XMLDB; 2) Scanning to find obfuscated
or encrypted contents; 3) Scanning and matching key-
words in blacklist.

Algorithm 1 Identifying web shell
For each file in web application do
STS =0; MFTS =0;
Scanning and matching signatures/function samples
if sample. Type =1 then
nCount = Count the number of occurrences of this sample in the
file.
STS + =nCount * sample. Score
else if sample. Type =2 then
nCount = Count the number of occurrences of this sample in the
file.
MFTS + =nCount * sample. Score
LW = Count the number of characters in the longest word in the
file.
if (STS > =Threshold_S) or (MFTS > = Threshold_MF)
Or (LW > =Threshold_LW) then add the file to suspicious list.
Scanning and matching keywords from the blacklist
if the keyword is in the blacklist then add the file to the suspicious
list

The detail of these steps is explained as follows:

1) Scanning and matching signatures/function samples

In this module, we scan each file in the web applica-
tion to filter malicious functions in these files and deter-
mine their dangerous levels according to malicious signa-
tures/function samples in the XMLDB database. As
shown in Algorithm 1, sample. Type =1 implies that it is
a dangerous signature sample; sample. Type =2 implies
that it is a malicious function sample. In the next step,
we count the appearance frequency of those signatures/
functions and calculate the signature total score (STS)
and the malicious function total score (MFTS) of the
files. If the STS exceeds a threshold value of signature
(Threshold _S), that file is marked as suspicious. If
MFTS exceeds a threshold value of malicious functions
(Threshold_MF), that file is also marked as suspicious.

2) Scanning to find obfuscated or encrypted contents

Obfuscated or encrypted contents are often stored as an
uninterrupted long string within a file. These strings can
be decoded into malicious codes to execute them. Finding
the longest uninterrupted string existing in the files is very
useful to identify obfuscated or encrypted contents.

Typically, the source code is written in a relatively
short length of words. So, identifying files with unusual
long strings can help us to recognize files with obfuscated
or encrypted codes.

Behrens and Hagen'" used this method in their NeoPI
project to find obfuscated and encrypted contents within
text or script files. However, if it is scanned on a set of
source codes that contain many images, videos, rich-text-
format, js, css, the false alert rate will be very high.
Thus, we try to test NeoPI on a set of benign source
codes, and the result shows a relatively high false alert
rate, which implies that NeoPI does not work well when
identifying web shells accurately.

This stage checks only the longest string that starts and
ends with header tags, such as “ <?Php...? > for PHP
language, “ < \% \@ Page Language >~ for ASPX lan-
guage, similarly for other languages because the source
code is only executed when it is enclosed in header tags.

Algorithm 2 Finding the longest word
If (data. Count(“ < ?PHP”)! =0) or (data. Count(“ < % @ Page
Language”)! =0):
longest =0
longest_word =" *
words = re. split(“[\s, \n, \r”’, data)
if words:
for word in words:
length = len(word)
if length > longest:
longest = length
longest_word = word

Algorithm 2 will search and identify the longest word
(LW) in the file that starts and ends with header tags. As
discussed previously, if the LW exceeds a threshold value

282

Truong Dinh Tu, Cheng Guang, Guo Xiaojun, and Pan Wubin

of the longest word (Threshold LW), that file is also
marked as suspicious.

3) Scanning for and matching dangerous/blacklist key-
words

The web shell files are often written and developed by
many hackers, in which there are comment lines with sus-
picious keywords on the source codes. Therefore, search-
ing for these suspicious keywords, such as a web shell by
, Hack by =, developed by =*, 157, c99, n3shell,
TrYaG Team, http: //cctea-m. ru/update/c999shell, ht-
tp: //ccteam. ru/files/c999sh_sourc-es, etc.,''”
for finding web shells.

is useful
The above keywords are rarely
used in a benign website the source, so their appearance
inside the source code has the possibility of being highly

malicious and may be marked as a suspicious file.

3 Experiment and Evaluation
3.1 Data set

For our test, we collected a total of 13 151 files from
the test dataset which included 12 982 files of benign web
pages (with high confidence) that did not contain mali-
cious codes and 169 malicious web shell files.

For legal web pages, we downloaded directly from
open sources websites which are prestigious and of high
rank based on Alexa'®; for malicious web shell files, we
downloaded and collected them from several security fo-
rums that were published and discussed on the Inter-
net'” "', We named this testing file T1.

On the other hand, we also collected 32 895 files of
open sources web pages, such as Oscommerce, VBB,
Joomla, WordPress, PhpNuke, Phpbb, etc., which were
shared on the Internet (these web pages may or may not
contain malicious files). We named this testing file T2.

3.2 Experimental results

The experiments are run on a machine with an Intel®
Pentium® CPU G640 2. 80 GHz processor with 4 GB
memory. We use python language to build a software for
Evil-hunter.

We run Evil-hunter to scan for T1 with different thresh-
old values. The threshold value is configurable to adjust
the detection rate. The results in Fig. 3 show that when
we set thresholds (LW, S, MF) higher, i.e., (354,
10, 30) which is marked as S1, Evil-hunter had a true
positive (TP) rate of 62.72% with a false positive (FP)
rate of 0.57% . It means that, Evil-hunter indentified 106
of the total 169 malicious web shell files correctly, and
74 of total 12 982 files of legal web pages were mistaken
for web shell files. On the other hand, when we set low
thresholds (354, 10, 2) marked as S2, Evil-hunter ob-
tained a true positive rate of 82.25% with a false positive
rate of 5.03% . It means that the Evil-hunter identified
139 of total 169 malicious web shell files correctly, and

653 of total 12 982 files of legal web pages were mistaken
for web shell files.

901
80r

60
50F
40F
301
201
10F

Detection rate/ %

0 .
\Q\ \m \Q\ ,,)m \5\ 5 0,\ f)) 0
03 A MO RO 5”“ ‘:b‘ 5“‘\
oo OQ (5‘3 R (5‘3 'O (’3 AN

Threshold value

Fig.3 True positive rates and false positive rates at different
threshold values (LW, S, MF)

Compare test results of Evil-hunter with some other de-
tection tools and Anti-Virus (AV) software packages,
such as Norton Anti-Virus (NA), Bit Defender (BD),
Microsoft Safety Scanner (MSS), AVG Anti-Virus
(AVG), Kaspersky Anti-Virus (KS), 360 Shadu (360
SD), Avast Antivirus (AVAST), and PHP shell detector
(PHP SD)™. As shown in Fig.4, the comparison results
show that Evil-hunter has a relatively high detection rate
and identifies web shells better than other Anti-Virus soft-
ware such as Kaspersky Anti-Virus(76%), 360 Shadu

(0%), AVG Anti-Virus (37%), Norton Anti-Virus
(20%), and Microsoft Safety Scanner (14%).
1001 -

S 80

2 aTp

g 601 mFP

S 401

2 o} H

0
@% Yo% o P Pt © WO @*@% ®
A a
e

Anti-virus software packages

Fig.4 True positive rates and false positive rates for different
detection tools on T1

We also scanned to check the detection ability of un-
known web shells on T2 from the above software packa-
ges. Results in Tab. 1 show that the software packages of
NA, BD, MSS, AVG, KS, 360SD, AVAST did not de-
tect any suspected web shell files in T2. Meanwhile, the
had 499
and gave warning of

PHP SD tool at the time of writing this paper,
well-known shells in its database'”
763 suspicious files, in which 4 files were precisely web
shells because they matched MD5 with the database of
PHP SD on servers. On the other hand, Evil-hunter gave
warning of 187 suspicious files. Through another manual
analysis and submitting suspicious files to the virus to-

tal™ for checking and analyzing, we determined exactly

Evil-hunter: a novel web shell detection system based on scoring scheme 283

11 web shell files that were possibly inserted into the web
application’s source code by hackers or web developers
for malicious purposes before sharing them on the Inter-
net. However, there are also 176 files that were false
alerts, because programmers used a few dangerous func-
tion samples for the purpose of installing or encrypting
sensitive information such as passwords or personal infor-

. 21
mation".

Tab.1 Comparison of other tools and software packages on T2

dataset
Approach Number of True web False web
suspicious files shell files shell files
BD 1 1 0
AVAST 2 2 0
KS 0 0 0
AVG 0 0 0
NA 0 0 0
MSS 0 0 0
360 SD 0 0 0
PHP SD 763 4 759
Evil-hunter 187 11 176

3.3 Discussion and evaluation

For AV software packages, as shown in Fig. 4 and
Tab. 1, on the T1 and T2 datasets, we find that the AV
software packages have a relatively poor web shell detec-
tion rate. Rahul'” also provided some analyses to prove
that the efficiency of current AV software in detecting
web shells is inadequate. Therefore, web server adminis-
trators should combine other detection tools with it to ef-
fectively detect web shells.

Comparing the advantages and disadvantages of some
other web shell detection tools, we have:

1) Grep"™ is a Unix command for searching files for
lines matching a given regular expression. The advantage
of this method is that it can easily find files containing the
keywords. However, the disadvantage of this method is
that it does not provide a list of dangerous functions. To
detect web shells, users must know which dangerous
functions should be found beforehand. Therefore, this
method has many false positives since some of these func-
tions are also used by benign web applications. Evil-hunt-
er can find the dangerous functions automatically based on
the XMLDB database that was collected previously.

2) NeoPI'"" has the advantage that it can find and detect
obfuscated and encrypted contents within text and script
files by calculating and listing some indices such as coin-
cidence, entropy, longest word, signature; after that it
will give a rank for all the files and the top ten files with
the highest ranking. However, its disadvantage is that it
cannot provide a threshold value for these indices to deter-
mine which files is a web shell. Therefore, we have to
analyze and judge from experts. Evil-hunter calculates the
score and determines the appropriate threshold value to
detect web shells.

3) PHP shell detector (SD). Basically, SD has a
known web shell signature database saved in web servers.
The advantage of this method is that its true positive rate
can be up to 99% for known web shells in the data-
However, it has the disadvantage that if a new
web shell have not been updated in the database, this ap-
proach will fail to detect it. Evil-hunter can detect un-
known web shells based on the threshold value and a large
set of malicious signatures/functions collected previously.
As shown in Tab. 1, the detection ability of Evil-hunter
on T2 is better than that of PHP SD.

2
base' .

4 Conclusion

In this paper, we propose a novel web shell detection
system based on the scoring scheme. From a large set of
malicious signatures/functions involved in malicious ac-
tivities of the web shell, we propose a scoring method to
indicate their danger levels, as well as a technique to de-
termine the threshold value for detecting web shells. We
implemented this approach in a tool, called Evil-hunter,
and validated it on large datasets that we collected previ-
ously. The results show that Evil-hunter can identify web
shells more efficiently compared to some other approa-
ches. Generally, Evil-hunter can minimize time and cost
for administrators by reviewing a source code automatical-
ly and give warnings for any file suspected of being mali-
cious.

References

[1] Behrens S, Hagen B. Web shell detection using NeoPI
[EB/OL]. (2012-04-13) [2013-10-10]. http://re-
sources. infosecinstitute. com/ web-shell-detection/.

[2] Luczko P, Thornton J. PHP shell detector [EB/OL].
(2012-06-12) [2013-10-10]. https: //github. com/em-
posha/PHP-Shell-Detector.

[3] Unix operating system. A manual for grep [EB/OL].
(2008-05-20) [2013-09-10] . http: //www. gnu. org/savan-
nah-checkouts/gnu/grep/manual/ grep. html.

[4] Jakobsson M, Ramzan Z. Crimeware: understanding new
attacks and defenses [M]. New York: Addison Wesley,
2008: 608.

[5] Canali D, Balzarotti D, Francillon A. The role of web
hosting providers in detecting compromised websites
[C1//Proceedings of the 22nd International Conference
on World Wide Web. Rio de Janeiro, Brazil, 2013: 177 —
187.

[6] Garg A, Singh S. A review on web application security
vulnerabilities [J]. International Journal of Advanced Re-
search in Computer Science and Software Engineering,
2013, 3(1): 222 —226.

[7] Mirdula S, Manivannan D. Security vulnerabilities in web
application an attack perspective [J]. International Jour-
nal of Engineering and Technology, 2013, 5(2): 1806 —
1811.

[8] Cova M, Kruegel C, Vigna G. Detection and analysis of
drive-by-download attacks and malicious javascript code
[C1// Proceedings of the 19th International Conference on

284 Truong Dinh Tu, Cheng Guang, Guo Xiaojun, and Pan Wubin

World Wide Web. Raleigh, NC, USA, 2010: 281 —290.

[9] Exploitable PHP functions [EB/OL]. (2012-03-22)
[2013-09-10]. http: //stackoverflow. com/questions/
3115559/ exploitable-php-functions.

[10] Mingkun X, Xi C, Yan H. Design of software to search
ASP web shell [J]. Journal of Procedia Engineering,
2012, 29(1): 123 —127.

[11] HuJ K, Xu Z, Ma D H, et al. Research of webshell de-
tection based on decision tree [J]. Journal of Network
New Media, 2012, 1(6): 15 —19. (in Chinese)

[12] Rahul S. Effectiveness of antivirus in detecting web appli-
cation backdoors [EB/OL]. (2012-07-30) [2013-10-10].
http: //www. chmag. in/article/feb2011/ effectivenessanti-
virus-detecting-web-appli-cation-backdoors.

[13] Hou Y T, Chang Y, Chen T, et al. Malicious web con-
tent detection by machine learning [J]. Expert Systems
with Applications, 2010, 37(1): 55 —60.

[14] Koo T M, Chang H C, Hsu Y T, et al. Malicious web-
site detection based on honeypot systems [C]//The 2nd
International Conference on Advances in Computer Sci-
ence and Engineering. Paris: Atlantis Press, 2013: 76 —
81.

[15] Canali D, Balzarotti D. Behind the scenes of online at-
tacks: an analysis of exploitation behaviors on the web

[C1// Proceedings of the 20th Annual Network & Distribu-
ted System Security Symposium. San Diego, CA, USA,
2013:1 - 18.

[16] Verma A, Insan D S. Signature based detection of web
application attacks [J]. International Journal of Advanced
Research in Computer Science and Software Engineering,
2013, 3(8): 117 —121.

[17] Certified ethical hacker [EB/OL]. (2012-02-200[2013-
09-10]. http: //ceh. vn/@ 4rum/forumdisplay. php?fid =
10.

[18] Alexa—The web information company[EB/OL]. (2012-
03-30) [2013-09-10] . http: //www. alexa. com.

[19] Project hosting on google code provides a free collabora-
tive development environment for open source projects
[EB/OL]. (2012-05-16) [2013-09-10]. http://code.
google. com/.

[20] VirusTotal—Free online virus, malware and url scanner
[EB/OL]. (2007-02-01)[2013-09-10] . https: //www. vir-
ustotal. com.

[21] Agbefu R E, Hori Y, Sakurai K. Domain information
based blacklisting method for the detection of malicious
webpages [J]. International Journal of Cyber-Security
and Digital Forensics, 2013, 2(2): 36 —47.

Evil-hunter: £ F 1 53 L HI By web shell &l & 4t

REAS A2 kY FmEY O HEERRY
(" AR ANAES TSR, G T 210096)
(P Fe T F AT S AT, F % 620900, Hid)
C RBAXFHIINRLFEZLEERRFTRELER T, B 7w 210096)

FHE 43t 2 A 2 & AR 2 SRR S LM I IR A AL 25 Hu 2 web JR 5235 £ N 69 & E K AL web
shell 5] 23,42 b T —#F & T4E4-#L%] 69 web shell #] £ 2% Evil-hunter. 4 26, M Z B W) Fo R A 42 A6 35 F ok
£ T K& 8 web shell 2% 12 A 89 L& B H A RHIE. Lok, 3B R web shell #=.E7 web 5 49
R) S e B A Fedd IR, F) R BT 3 4R 69 3% 4 SR ok 2T P SR 0 AR R AR BAT IR 4, SE 0 T A3 2 RAF
E B0y HRME. R ARIEPTAF B 69 5 BRI AE 45 R 8 SR e AR] Sk ok xF web R P AT LA 09 B A
web shell #4747 5], L84 R £, 5 H b7y ik 48k Evil-hunter B % 3 69 32 5] 5 Fo A 54 .

KR - web shell A ; % 53k 05 & Z AR AR)

fhE 4 %S . TP393. 08

