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Abstract: In order to classify the Internet traffic of different
Internet applications more quickly, two open Internet traffic
traces, Auckland [l and UNIBS traffic traces, are employed as
study objects. Eight earliest packets with non-zero flow
payload sizes are selected and their payload sizes are used as
the early-stage flow features. Such features can be easily and
rapidly extracted at the early flow stage, which makes them
outstanding. The behavior patterns of different Internet
applications are analyzed by visualizing the early-stage packet
Analysis results show that most Internet
applications can reflect their own early packet size behavior

size values.

patterns. Early packet sizes are assumed to carry enough
information for effective traffic identification. Three classical
machine learning classifiers, i. e., the naive Bayesian
classifier, naive Bayesian trees, and the radial basis function
neural networks, are used to validate the effectiveness of the
proposed assumption. The experimental results show that the
early stage packet sizes can be used as features for traffic
identification.
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‘” T ith the explosion of Internet traffic, an accurate

traffic classification has become progressively im-
portant for network management (e. g., deploying quali-
ty-of-service-aware mechanisms, bandwidth budget man-
agement, and intrusion detection). Two effective classi-
cal techniques are used under traditional network condi-
tions: port-based and payload-based methods. However,
these traditional techniques are becoming ineffective for
the modern Internet because of dynamic port numbers and
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encryption techniques. Machine learning techniques intro-
duced by traffic classification research have proven to be
promising techniques in recent years'' ™.
ing-based traffic classification techniques are effective in
modern traffic classification because they can identify
traffic according to macro-patterns instead of micro-fea-

tures, especially for cases that traditional techniques suf-

Machine learn-

fer from. Many supervised and unsupervised machine
learning algorithms have been successfully applied in traf-
fic classification in the past few years. Moore and his re-
search group have made significant contributions in this
area” . They first built a traffic classification data set in
2005 based on 248 statistical features. They used Bayes-
ian analysis techniques'® and Bayesian neural networks'”
in traffic classification, and achieved high identification

. 8
accuracies. Este et al. ™

studied the information stability
carried by traffic flow features at the packet level, inclu-
ding packet size, round-trip time ( RTT), location and
inter-arrival time (IAT). The packet size provides the
most significant contribution in discriminating application
protocols. They also proposed a support vector machine
(SVM) based classification frame, which achieved high
classification accuracies on three publicly released data
sets'” . Li et al. """ also used SVM. Crotti et al. '
proposed protocol fingerprinting, which was a novel sta-
tistical method'”. Du et al. """ used the k-nearest neigh-
bors algorithm as the classifier integrated with a binary
particle swarm optimization algorithm. They constructed
a multistage traffic classifier'”. Unsupervised learning
techniques have also attracted much research attention.
" stated that a supervised learning model
should be based on a pre-labeled set of samples. They al-

so stated that an unsupervised learning was appropriate for

Bernaille et al. !

traffic classification because this type did not rely on pre-
defined classes. Erman et al. "' used K-means and densi-
ty-based spatial clustering of applications with noise clus-
tering algorithms to find traffic patterns. They proposed a
semi-supervised traffic classification model that found and
mapped traffic clusters to applications by using ground
truths'"”". Other machine learning techniques, such as the
Gaussian mixed model'"™
were also applied in traffic classification.

Early-stage traffic identification has drawn considerable

. . 20
interest from the research community in recent years[ I

. 9
and flexible neural trees',
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Most traditional machine learning-based traffic classifica-
tion techniques use an instance’s statistical features to
identify traffic. In real cases, classifying Internet traffic
when they have ended is useless. Therefore, many re-
searchers have turned to finding effective models that are
able to identify early-stage Internet traffic. In 2009, Este

etal. ™

proved that early-stage packets of an Internet flow
can carry enough information for traffic classification.
They analyzed RTT, packet size, IAT, and packet direc-
tion of early-stage packets. Packet size was the most ef-
fective feature for early-stage classifications. In 2008,

Huang et al. ©*"

studied the early-stage application charac-
teristics and used them for effective classification. They
recently extracted early-stage traffic features by analyzing
the negotiation behaviors of different applications. They
applied these features to machine learning-based classifi-
ers with high performances'™ . Hulldr et al. "' proposed
an automatic machine learning-based method that con-
sumes limited computational and memory resources for
early-stage P2P traffic identification. Dainotti et al. "
constructed highly effective hybrid classifiers and applied
a hybrid feature extraction method to early-stage traffic
classification. Nguyen et al. ™™ used statistical features
from sub-flows for timely voice-over-Internet protocol
traffic identification. A sub-flow is a small number of the
most recent packets taken at any point in a flow’s life-
time. Hence, they made the early stage “timely.”

In this study, the payload sizes of the eight earliest
non-zero packets are used as the early-stage flow fea-
tures. First, the packet payload size is directly extracted
from its header without any extra computation. Secondly,
the payload size is the most important packet-level feature
with the lowest network environment correlation. Other
packet-level features (e. g., RTT and IAT) heavily de-
pend on the network environment. The application nego-
tiation procedure is the main factor that determines the
payload size. First, the behavior patterns of different In-
ternet applications are analyzed by visualizing these early
packet size values. This study employs two open Internet
traffic traces, namely Auckland II and UNIBS traffic
traces. The phenomenon that most Internet applications
show their own early-stage packet size behavior patterns is
found. It is assumed that early packet sizes carry enough
information for effective traffic identification. Three clas-
sical machine learning classifiers are applied to our vali-
dation experiments. The early stage packet sizes are used
as effective traffic identification features.

1 Data Sets

Two open Internet traffic data sets are employed in this
study: Auckland I captured in New Zealand in 2000 and
UNIBS captured in Italy in 2009. The two data sets are
selected to analyze and validate the early-stage Internet
traffic packet size features.

1.1 Auckland traffic traces

Auckland I is a collection of long GPS-synchronized
traces obtained by using a pair of DAG 2 cards at the Uni-
versity of Auckland. This data set is available in Ref.
[26]. From November 1999 to July 2000, 85 trace files
were captured. Most traces were targeted at 24-hour runs.
However, hardware failures resulted in significantly shor-
ter traces. Two trace files captured on Feb. 14, 2000
(i.e., 20000214-185536-0. pcap and 20000214-185536-
1. pcap) are selected. The traces included only the header
bytes with a maximum amount of 64 bytes for each
frame. The application payload was fully removed. All
IP addresses were used with anonymity by using the
Crypto-Pan AES encryption. The header traces were cap-
tured with a GPS-synchronized mechanism by using a
DAG3. 2E card connected to a 100 Mbit/s Ethernet hub
that interconnects the University’s firewall to the border
router.

Deep packet inspection tools are invalid for obtaining
ground truths because the application payloads are not re-
corded in Auckland II. The only way to obtain the origi-
nal application type is to use port numbers. In this study,
only the transmission control protocol (TCP) case is used
because the TCP is the predominant transport layer proto-
col. Each flow is assigned to the server port-identified
class. Eight main packet types are selected from the
Auckland [I traces and filter “mice flows” with no more
than eight packets with payload. All selected types and
their instance and total byte distributions are listed in
Tab. 1.

Tab.1 Selected types of Auckland II trace

Type Number of instances Total bytes
ftp 251 136 241
ftp-data 463 5260 804
http 23721 13942 1961
imap 193 86 455
pop3 498 98 699
smtp 2 602 1230528
ssh 237 149 502
telnet 37 21171

1.2 UNIBS traffic traces

The UNIBS is another open traffic trace developed by
Prof. F. Gringoli and his research team. This data set is
available in Ref. [27]. They developed a useful system
named GT"™ to apply ground truths of captured Internet
traffic. The traces were collected from the University of
Brescia campus network’s edge router for three consecu-
tive working days (Sept. 30, Oct. 1, and Oct.2, 2009).
These traces were composed of traffic generated by a set
of 20 workstations that run the GT client daemon. Traffic
is collected by running Tcpdump'™' on the faculty’s rout-
er. The router was a dual Xeon Linux box that connected
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the network to the Internet through a dedicated 100 Mbit/
s uplink. In UNIBS, 99% are TCP flows. Hence, the
research reuses the TCP flows in this data set. The
UNIBS traces record each captured flow’s application in-
formation by using GT. The application ground truths are
obtained by using both TCP port numbers and GT re-
cords. Eight main packet types are chosen in UNIBS ( see
Tab.2). Two popular P2P applications included in this
data set (i.e., BitTorrent and eDonkey) are recorded by
GT. Skype is also selected as an import Internet applica-
tion. Flows with no more than eight packets of payload
were filtered. Each type’s instance and total byte distribu-
tions are listed in Tab. 2.

Tab.2 Selected types of UNIBS traces

Type Numbers of instances Total bytes
bittorrent 3571 6393 487
edonkey 379 241 587

http 25729 107 342 346

imap 327 860 226

pop3 2473 4292419

skype 801 805 453

smtp 120 43 566

ssh 23 39 456
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2 Feature Analysis Using Visualization

In this study, the paper analyzes the effectiveness of the
early-stage packet size features by using the visualization
method. The research selects the eight earliest non-zero
payload packets for each TCP traffic instance in both the
Auckland [T and UNIBS traces. The transport layer payload
sizes of these packets are used as features. As stated in
Section 1, the traffic samples whose number of non-zero
payload size packets is less than eight were filtered as mice
flow and were not taken into account. Four scatters for
both the Auckland [l and UNIBS traces are drawn. The
first one is the payload size view of packets 1 and 2. The
second one is the payload size view of packets 3 and 4,
and so forth. A logarithmic scale is used for both horizontal
and vertical axes in these scatters. The horizontal axis repre-
sents the former packet’s payload size. The corresponding
vertical axis represents that of the latter packet (e. g., the
horizontal axis of Fig. 1 represents the payload size of packet
1 and the vertical axis represents that of packet 2). We visu-
alize the early-stage payload size features and preliminarily
validate these features’ effectiveness by using the scale.

The visualization results of Auckland ]I traces are
shown in Fig. 1. All traffic samples are centralized in a
few values for the first packet’s payload size ( see Fig. 1).

10°r
*ftp
+ftp-data
hti
107 E
< * imap
]
f% + pop3
& + < smtp
N
+ssh
+telnet
+
100 1 1 1 |
10° 10! 102 10° 104
Packet 3
(b)
103 -
*fip
+ ftp-data
102 hifp
0 * imap
% . 3 ’ ) + pop3
A 101 L +§ b e e ime— o < smtp
. ssh
+ 4 *x + telnet
4 4
0 1 L L ]
1000 10 102 10° 10*
Packet 7
(d)

Fig.1 View of the payload sizes of Auckland I trace
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The second packet also does not scatter on many values
for the payload size. Hence, making a distinction be-
tween traffic types is relatively difficult. Therefore, the
first and the second packets are unsuitable for traffic pat-
tern recognition in this data set. Most types show their
unique patterns in Figs. 1 (b) to (d). Most hypertext
transfer protocol (HTTP) instances congregate on the top-
right corner of these figures as the dominant traffic type.
Most HTTP sessions carry relatively heavy payloads from
the third packet. Many Internet applications are layered
on the HTTP protocol (e. g., Internet streaming media
and Web mail). This structure causes various HTTP traf-
fic patterns. Some HTTP instance scatter is observed on
different areas in Figs. 1(b) to (d). Another important
type in the Auckland traces is the simple mail transfer
protocol (SMTP). In the same figures, SMTP show a
different behavior pattern. Most SMTP instances cluster
at the middle areas and they are represented by the cross
area in each figure. The POP3 instances are fewer than
that of the SMTP. Most POP3 instances cluster in Figs. 1
(b) and (c). However, POP3 does not create a clear
cluster in Fig. 1(d). POP3 does not have its clear pattern
from packet 7.

An interesting phenomenon, which we called the “12-
byte size packet” phenomenon, is observed in Fig. 1.
Many packets have a payload size of 12 bytes despite their

traffic types. We cannot explain why various traffic kinds
generated excessive 12-byte size packets. The reasons be-
hind this phenomenon are difficult to discover without the
payload content information in the traffic trace.

The UNIBS trace visualization results are shown in
Fig. 2. In general, various kinds of traffic in the UNIBS
data set do not make clear clusters like those in the Auck-
land [ data set. The main traffic types are still easily
distinguished from each other. Some characteristics that
are easily observed from these figures are in accordance
with Fig.2. First, packets 1 and 2 in Fig.2(a) show few
payload size values. Furthermore, the traffic behavior
patterns of packets 1 and 2 in the UNIBS trace are simpler
than those in the Auckland [[ trace. Secondly, HTTP al-
so occupies the top-right corners of the views of packets 3
and 4, packets 5 and 6, and packets 7 and 8. The pattern
is in accordance with the Auckland I trace attribute. As
P2P traffic types, BitTorrent and eDonkey have a consid-
erable number of instances in the UNIBS trace. These
two P2P applications do not show clear behavior patterns
in the visualization views except in packets 5 and 6.
Some BitTorrent and eDonkey instances mix with the HT-
TP instances in Figs.2(c) and (d). However, these in-
stances clearly cluster together in Fig. 2(b). The P2P
traffic has its own early-stage packet payload size charac-
teristics.
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Fig.2 View of the payload sizes of UNIBS trace
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3 C(lassification Experiments

The naive Bayesian classifier (NB), naive Bayesian
classification trees ( NBTree), and radial basis function
neural networks (RBF) are applied for classification tests
to validate the effectiveness of the early-stage packet size
features in traffic classification. Five-folder crossover val-
idation is used on both Auckland ]I and UNIBS data
sets. Each data set is uniformly split into five subsets.
The first subset is used for the testing set. The other four
subsets are used for the training set. The second subset is
used for the testing set and so forth. Each time, the NB,
NBTree, and RBF are applied, and their classification re-
sults are compared.

3.1 Performance measures

The confusion matrix is the classifier measurement ba-
sis in which rows denote the actual instance class and the
columns denote the predicted class. A typical binary clas-
sification confusion matrix is shown in Fig. 3. The true
positive (TP) is the number of positive instances that are
correctly classified. The false positive ( FP) is the number
of positive instances incorrectly classified as negative
samples. The true negative (TN) is the number of cor-
rectly classified negative instances. The false negative is
the number of negative instances incorrectly classified as
positive samples.
based on the confusion matrix to evaluate the classifier
performance. The following measures are mostly used for
general classification tasks.

Many measure types are conducted

Predicted
Positive Negative
£
= TP FN
=3
= =%
2
<2
5 FP N
o
7

Fig.3 Confusion matrix

The true positive rate (TPR) is the ratio between the
correctly classified positive instances and all actual posi-
tive instances:

TP

TPR = b N

The false positive rate (FPR) is the ratio between the
incorrectly classified negative instances and all actual neg-
ative instances:

FP

FPR = b v IN

3.2 Results and analysis

The five-folder crossover validation results on the

Auckland ]I data set are shown in Tab. 3. The best value
for each measure is marked in bold. From the classifiers’
point of view, the NBTree obtains the best performance
among the three classifiers. The NBTree obtains the high-
est true positive rate (TPR) values for all classes except
for the FTP data. All NBTree TPR values are greater than
0.9 except for Telnet. Most NB and RBF TPR values are
greater than 0. 85. All false positive rate (FPR) values in
the table are low. The classifiers are able to accurately
identify other samples for each traffic class. In most ca-
ses, the selected classifiers can effectively identify the
traffic instances in the Auckland [l data set by using the
early-stage packet size features. Both the NB and the
RBF obtain very low TPR values for the FTP and Telnet
classes. In addition, the NBTree obtains a relatively low
TPR value for telnet. The sample distributions in Tab. 1
show that 251 and 37 instances for FTP and Telnet ac-
counted for 0. 90% and 0. 13%, respectively, of the en-
tire data set. Therefore, the highly imbalanced Auckland
Il class distribution is an important factor that causes the
low identification performances for the FTP and Telnet. As
the most predominant traffic type on the Internet, the HT-
TP should be accurately distinguished from other types.
Tab. 3 shows that all NB, NBTree, and RBF achieve high
TPR and low FPR values for HTTP traffic instances. There-
fore, the early-stage packet size features are able to carry
enough information for HTTP traffic identification. This
finding is in accordance with the analysis in Section 2.

Tab.3 5-folder crossover validation results of Auckland [I
data set
Class NB NBTree RBF
TPR FPR TPR FPR TPR FPR
ftp 0.323  0.003 0.940 0.001 0.327  0.000
ftp-data 0.952 0.009 0.942 0.000 0.933 0.002
http 0.968 0.012 0.998 0.025 0.991 0.035
imap 0.850 0.006 0.917 0.000 0.539 0.004
pop3 0.906 0.017 0.958 0.001 0.876 0.007
smtp 0.867 0.007 0.972 0.002 0.905 0.013
ssh 0.886 0.002 0.962 0.000 0.886 0.001
telnet 0.162 0.007 0.649 0.000 0.108 0.000
Average 0.949  0.011 0.992 0.021 0.969  0.031

The five-folder crossover validation results on the
UNIBS data set are shown in Tab. 4. The best value for
each measure is marked in bold. The NBTree obtains the
best class values for both TRP and FPR with no excep-
tion. Therefore, the NBTree is primarily concluded as a
good classifier for Internet traffic identification. The NB
does not perform well for the UNIBS data set. The NB
obtains five TPR values, which are less than 0. 8, espe-
cially for HTTP. The NB TPR value is 0. 746, which is
less than that of the NBTree and the RBF (0.999 and
0.992, respectively). The NBTree and RBF obtain TPR
values greater than 0.99 and FPR values lower than
0.04. The early-stage packet size features are effectively
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used to identify HTTP traffics. All Skype TPR values are
low. Traffic identification on Skype is difficult. The
Skype instances do not show clear behavior patterns in the
visualization views. The instances scatter on many areas in
Figs.2(b) to (d). Therefore, the early-stage packet size fea-
tures are not enough for Skype traffic identification. Other
effective features should be used to identify Skype traffic.

Tab.4 5-folder crossover validation results of UNIBS data set

B NB NBTree RBF

€% TR FPR TPR _ FPR_ TPR _ FPR
bittorrent 0715 0.010  0.996  0.002  0.925  0.017
edonkey ~ 0.673  0.040  0.873  0.002 0.042  0.000
http 0.746  0.026  0.999  0.006 0.992 0.038
imap 0.498  0.024 0.976  0.001 0.691  0.002
pop3 0.982  0.013  0.994 0.000 0.982  0.008
skype 0.395 0.152  0.407 0.000 0.000  0.000
smtp 0.942  0.001  0.983  0.000 0.967 0.000
ssh 0.957  0.000 1.000  0.000 0.957  0.000
Average  0.757  0.024  0.995  0.005  0.967  0.032

A set of comparison experiments were carried out
among the early-stage payload size feature set, the early-

stage hybrid feature set, and the long-term payload size
feature set. These experiments are used to validate the ef-
fectiveness of the payload size features. The early-stage
hybrid feature set contains the payload sizes, IAT, and
RTT of the first eight packets. The long-term payload
size feature set contains the payload sizes of the first 20
packets. The model building time is taken as an important
performance measure.

The comparison results are shown in Tab. 5, where 8-
ps represents the early-stage payload size feature set, 8ps
+ iat + rtt represents the early-stage hybrid feature set,
and 20-ps represents the long-term payload size feature
set. The best value for each measure is marked in bold.
The 8-ps feature set obtains the best time performance for
The same feature
achieves the best TPR and FPR performances for most ca-
ses. The 20-ps feature set result is somewhat unexpected.

all classifiers and both data sets.

This feature set does not show advantages over the 8-ps
feature set for most cases. The 8ps + iat + rtt feature set
performs quite well in the comparison using the NB clas-
sifier, especially for the UNIBS data set.

Tab.5 5-folder crossover validation results using different feature sets on UNIBS data set

Class Auckland I UNIBS
8-ps 8ps + iat + rtt 20-ps 8-ps 8ps + iat + rtt 20-ps
TPR 0. 949 0. 0941 0. 940 0.757 0.904 0.774
NB FPR 0. 011 0.012 0.015 0. 024 0. 035 0.034
time 0.07 0.10 0.27 0. 09 0.15 0.41
TPR 0. 992 0. 992 0. 992 0. 995 0.992 0. 991
NBTree FPR 0. 021 0.011 0. 008 0. 005 0.010 0. 004
time 13.98 44.92 282.73 16. 81 69. 15 568. 67
TPR 0. 969 0.975 0. 963 0. 967 0. 960 0. 947
RBF FPR 0. 031 0. 024 0.032 0. 032 0. 055 0.094
time 289. 39 549. 87 1013.49 148. 39 321.07 973.22

4 Conclusion

This paper studies Internet traffic identification using
the early-stage packet payload size as features. By visual-
izing the early-stage packet payload size values, different
Internet traffic types are found to have their own early-
stage behavior schemas. Therefore, constructing effective
Internet traffic identification models is possible by using
the simple payload sizes of the early-stage packets. The
existing early-stage traffic identification techniques use
packet size and time features. Our method can easily and
rapidly extract features because it uses the packet payload
size only. Speed is important for real early-stage traffic
identification. Hence, an identification model is required
to extract features as fast as possible. Therefore, using
the packet payload size as the traffic feature is a feasible
and effective feature-extracting method. Three classical
classifiers are applied to validate the effectiveness of the
feature of the early-stage packet payload size. For most
Auckland Il and UNIBS traffic trace types, the classifiers

obtain high identification rates by using the simple pay-
load size features.
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