Journal of Southeast University (English Edition)

Vol. 30, No. 3, pp. 296 — 301

Sept. 2014  ISSN 1003—7985

An adaptive generation method for free curve trajectory
based on NURBS

Zhu Hao"”  Liu Jingnan'

Yang Ankang'

Wang Mulan®

('School of Automation, Southeast University, Nanjing 210096, China)
(* Jiangsu Key Laboratory of Advanced Numerical Control Technology, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract: To realize the high precision and real-time
interpolation of the NURBS ( non-uniform rational B-spline)
curve, a kinetic model based on the modified sigmoid function
is proposed. The constraints of maximum feed rate, chord
error, curvature radius and interpolator cycle are discussed.
This kinetic model reduces the cubic polynomial S-shape
model and the trigonometry function S-shape model from 15
sections into 3 sections under the precondition of jerk,
acceleration and feedrate continuity. Then an optimized
Adams algorithm using the difference quotient to replace the
derivative is presented to calculate the interpolator cycle
parameters. The higher-order derivation in the Taylor
expansion algorithm can be avoided by this algorithm.
Finally, the simplified design is analyzed by reducing the
times of computing the low-degree zero-value B-spline basis
function and the simplified De Boor-Cox recursive algorithm is
proposed. The simulation analysis indicates that by these
algorithms, the feed rate is effectively controlled according to
tool path. The calculated amount is decreased and the
calculated speed is increased while the machining precision is
ensured. The experimental results show that the target
parameter can be correctly calculated and these algorithms can
be applied to actual systems.
Key words: free curve; NURBS ( non-uniform rational
B-spline) ; sigmoid function; Adams algorithm
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he important target of modern CNC machining is free
Tcurve machining. Among numerous descriptions of
with its accurate,
powerful shape control ability, the NURBS curve is set as
the only description of geometrical shapes in the standard
for the exchange of product model data ( STEP) by the
International Organization for Standardization (1ISO) ™,

free curve, unified descriptive and
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Most of current CNC systems, particularly domestic ma-
chines only support the basic function interpolation. Some
of the domestic low-cost machines even only support line-

. . 2
ar and arc interpolation’

. The free curve can only be ap-
proximated by large amounts of small segments by these
machine tools. On the one hand, it increases the speed
fluctuation while reducing the machining precision. On
the other hand,
Hence, it is important and meaningful to research the

NURBS curves interpolation.

it also lowers the machining speed.

1 Machining Principle of the NURBS Curve
1.1 Definition of the NURBS curve

There are different descriptions of NURBS curves. The
parameter description is one of the most common ones.
The definition of a p-degree NURBS curve is shown

3
as[ 1

i N, ,(u) w,P,
Clu) == —— (D)
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where w, are the weights; P, are the control points;
N, ,(u) are the p-degree B-spline basis functions which
are defined on the non-uniform and non-periodic knot

vector, U ={a, ..., a, Uy oy oees Uy g b,...,b}. N, ,(u)
> T
is defined by the De Boor-Cox recursion formula. It is

shown as
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1.2 Machining of the NRUBS curve

The key process of machining a NURBS curve is inter-
polation. The principle is to calculate the three-dimen-
sional coordinate feed value AX, AY, AZ after one interpo-
lator cycle T according to the characteristics of the
NURBS curve C(u) and current cutting point. The de-
tailed steps are as follows: 1) Determining the model and
the constraint of the cutter’s feedrate v, acceleration a and
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jerk j based on the NURBS curve C(u) and machine pa-
rameters. 2) Calculating the step value AS in the path do-
main according to the feedrate v of each point in curve C
(u). Calculating the position parameter u;
terpolation cycle T in the parameter domam according to
the current position parameter u; and the step value AS.
(3) Calculating the feed value AX, AY, AZ in the path
domain according to the position parameter u,,
rameter domain. In the first step, the feedrate is influ-
enced by the curvature of C(u). The feedrate drops
where the curvature is large, otherwise the contour error
will be brought in. In addition, the characteristics of ac-
celeration and jerk affect the shock caused by the cutter
and the calculation of the feedrate. Hence, a rational ki-
netic model can enhance the interpolation accuracy. In
the second and third steps, the mapping between the path
domain and the parameter domain needs to be calculated,
so the higher-order derivation of the NURBS curve is nee-
ded. Therefore,
performance can be promoted by a well-designed algo-
rithm. In this paper, these topics are discussed.

2 Kinetic Model Planning Based on Modified
Sigmoid Function

after one in-

in the pa-

the computing speed and the real-time

2.1 Basic requirements of the kinetic model

in addition to the characteristics
of the machine itself, the speed and precision of interpo-
lation also closely depend on tool path. When the curva-
ture changes, the interpolation speed needs to be changed
correspondingly. Therefore,
based on tool path is a hot topic in the numerical control
field. Generally speaking,

As mentioned before,

how to adjust the feedrate

the feedrate can reach the
maximum value when the tool path is linear. When the
the federate decreases.
it is necessary to focus on the continuous change of

radius of curvature increases,
Thus,
feedrate. Besides this, the research of Béarée et al. '*”!
shows that the soft shock is generated when acceleration
and jerk are discontinuous. This means that the continuity
of acceleration and jerk should also be considered.

For a period tool path which consists of acceleration,
uniform-speed and deceleration, the traditional feedrate
model can be a linear model, an exponential model, a
. The
S-shape model can also be divided into a seven-stage
form, cubic polynomial form, and trigonometry function

linear-quadratic model, an S-shape model and etc'

form. Refs. [7 —8] showed that the feedrate or accelera-
tion cannot be maintained continuously in the linear mod-
el, exponential model and linear-quadratic model; in the
seven-stage S-shape model, feedrate and acceleration are
continuous but not jerk. In the cubic polynomial S-shape
model and the trigonometry function S-shape model, the
acceleration and jerk are continuous, but the whole fee-
drate changing process should be separated into 15 stages

with a complex algorithm. Based on the above mentioned

research, we present a novel kinetic model based on the
sigmoid function. In this model, the feedrate changing
process is divided into only three stages, while the accel-
eration and jerk are continuous.

2.2 The Kkinetic model

The sigmoid function is a nonlinear function which is
widely used in the artificial neural network field. Its defi-
nition is shown as

fx) = (3)
€

T+l

The sigmoid function and its first-, second-order deriv-
ative are continuous and derivable in the definitional do-
main. The profile of the sigmoid function is S-shape
which is in accordance with the requirements of the fee-
drate model; however, the definitional domain contains a
negative part because the time parameter cannot be de-
scribed. For this reason, we design the modified sigmoid
function to describe the kinetic model. In this model, the
feedrate changing process is simply separated into three
stages: uniform-speed,
stage. The kinetic model is shown as

acceleration, and deceleration

1
( 7,—0.5)k O0<sr<y,
I +e
v(f) =4V, Lh=st<f, (4)
(1 - 0. S)k nL<t<t,
((l+e )) O=sr<t,
a(t) =40 1, <t<t, (5)
( (1+e,, )k L<t<t,
2e e’
<
((1+e”)3 (1+e”)2)k Osi<t,
j(t) =40 L<t<t, (6)
262(r—n) e'_"
- + k t,<t<t
( (1 +e/+1()3 (1 +e/—/;)2) 2 < 3

where v(1), a(t), j(t) are the feedrate, acceleration and
jerk, respectively; k is the proportionality coefficient; v
is the maximum value of the feedrate. #,-¢,is the accelera-
tion stage; t,-t, is the uniform-speed stage; ¢,-¢, is the de-
celeration stage. The values of #,, #,, t, and ¢, are deter-
mined by the shape of manufacturing objects. ¢, = ¢,
means that the processing only includes the acceleration
and deceleration stage.

From the kinetic model, we know that t— 0 implies
1/(1+e™") =0.551/2, e /(1 +e )*—>0 and 2e */(1
+e )’ —e /(1 +e ")’ —0. Actually, if 7 =10, then
e /(1+e™)7 =4.5395%x107°, 2¢*/(1 +e™")° -
e /(1+e™)*=4.539 2 x 10 °. Therefore, if the value
of t is greater than 10, the following conclusions can be
1) k=2v_; 2) v(t), a(t), and j(t)are all ap-

proximately continuous. The profile of this model is

drawn:
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shown in Fig. 1.

A

— Feedrate
—- = Acceleration

"""" Jerk

Feedrate, acceleration, jerk

Time

Fig.1 The kinetic model based on Sigmoid function

2.3 Constraint

In the kinetic model, the maximum value of feedrate
v, is codetermined by chord error g, the radius of curva-
ture r and interpolator cycle 7. Ref.[9] gave the con-
straint which is shown as
2 Ve2r-¢)
V= 7
. - (7)
Given the assumption that the chord error and interpo-
lator cycle is fixed, the greater the radius of curvature,

the higher the upper limit of feedrate.
3 The Optimized Adams Algorithm

As mentioned in section 2, the new position parameter
u,,, after one interpolator cycle should be computed in the
interpolation process according to the current position pa-
rameter u; and feedrate v(7) in the path domain. This
process is usually realized by the Taylor series expansion.

The second-order Taylor expansion formula is shown as

w,, =u;+Au, =u, +T% gi—u +0(13)
(8)
According to the definition of instantaneous feedrate,
dC(u) ‘
V(tj) N ‘ ‘ u=u; dt (9)
du v(t) d’u
— = +——————. Then —
So ar |, ‘dC(u) en 2 can be
du u=—u;
calculated. Substituting it into Eq. (7), u,,, can be ac-

quired.

The shortcoming of Taylor series expansion is that the
Taylor high-order expansion is necessary for high preci-
sion. It means that the higher order derivative of NURBS
curve C(u) needs to be calculated. This is a very compli-
cated process, but reducing the order of expansion will
lower the precision. To resolve the problem, we present
an optimized Adams-formula-based algorithm which can
fasten the u,,, calculation.

The core concept of the Adams algorithm is to compute
the current function value through the previous n steps of
the derivative values. The common Adams explicit for-
mula is shown as

h , /
=y(x,) +ﬁ(55y (x,) =59'(x,_,) +

37y'(x,5) =9y'(x,.5))

where & is the stepping. The truncation error of this for-
mula is O(£)™”
Applying this formula to interpolation, we can obtain

y(xn+l)
(10)

du
u, ., =u; +Au; =u; +ﬂ(55 ar |, -
du du du
59 — +37 — -9 —
Val o L, al,, ) ay

From Eq. (11), we know that the higher-order deriva-
tion can be avoided by using the Adams formula rather
than the Taylor series expansion. However, there is still
the first-order derivative in the formula. For this prob-
lem, we can replace the derivative with the difference
quotient of C(u).

‘du

Substituting Eqgs. (12) and (9) into Eq. (11), we can
obtain

(12)

[ Cuy) -C(u;_,)

M]-—Mj |

- Au. = l 55 V(I)
W U RIS T og) 7T ey - a%])
u, -
v(f; s
59 (7)) 37 ( )
C(uj]) C(u, C( uj—Z) C(u/ 5)
u, |, —u;_, Uj oy = U,
LUE) (13)
C(uj_z) —C(Mj_4)
U 3 —u;_,
For computing the position parameter u,,,, the previ-
ous several position parameters u;, u,_,, U;_,, ... are nee-

ded, which means that this formula cannot be self-star-
ted. Other algorithms must be used to acquire the first
The Eula formula or Runge-
Kutta formula is the proper choice.

several position parameters.

4 Computation of the Feed Value

After obtaining the position parameter in the parameter
the feed value in the path domain AX,AY,
AZ can be computed. The steps of the feed value calcula-
tion are shown as follows.

domain u

j+lo

4.1 Computing knot span of tool position

The NURBS curve is a type of piecewise parameter
curve, so the first step is to determine the knot span in
which u; | lies. We can use the linear or binary search to
accomplish this task.
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4.2 Computing nonzero basis function

From the De Boor-Cox recursion formula Eq. (2), we
know that each p-degree B-spline basis function N, ,(u)
is a linear combination of two (p —1)-degree basis func-
tions. It means that we need to compute two product
terms for one basis function. For example, assume that p
=2, 6 product terms need to be computed for 3 second-
degree basis functions. 12 product terms need to be com-
puted for 6 first-degree basis functions. That is to say,
totally 18 product terms need to be computed for 3 sec-
ond-degree basis functions, in which 9 kinds of low-de-
gree basis functions are involved.

According to the property of the B-spline basis func-
tion, we know that in any given knot span [ u,,u,,,), at
most p + 1 basis functions are nonzero. They are named

Ni—p,p DI Ni,p'
each degree basis function. For example, N, ,, N,,, N;,

are 3 second-degree basis functions that we want to com-

So we can draw the relation schema of

pute. The nonzero basis function is in the solid box.
From the schema we know that the first and the last p + 1
nonzero basis functions are only related to one low-degree
nonzero basis function. As shown by the dotted arrows,
there are a large number of low-degree zero-value basis
functions. It is not necessary to calculate them ( shown in
the dotted box ). Focusing on 3 second-degree basis func-
tions again, actually 6 product terms ( involving three
types of low-degree basis functions) need to be compu-
ted. Based on Fig. 2, the simplified algorithm is de-
scribed as follows.

Assume that there are p + 1 p-degree nonzero B-spline

basis functions, N, (0<k<p), then

i-p+k,p
(up —u)’
= N, ,(u) k=0
(ui+1 _u[717+1)(u1+1 _M[—p+2)"'(ui+l —u[) .
u- ui ui+ p-1 u
N, (u) = — N, (u) + ! '_ Ny, (u) O<k<p (14)
i+p i i+p+1 i+1
(u—-u)"
- N, ,(u) k=
(ui+p_”i)(ui+p-1_”i)"'(ui+1_ui) ! P
Ny, | Ny | N;, Ny, i Ns, i ;N[,p(u)wixi
BN EL E Xy = B
AWM 2N
i NI.() i\NZ_(] Nl() N-HD\: Nil) i iN (M)W Y
[ S I IR \_____ 1 i,p it
_ i=0
Fig.2 Relation schema of each degree basis ¥( i ) = (15)
2:6 Ni,p(u)wi
If k=0ork=p, N,_,,,, is the first or last p-degree B- "
spline basis function. When the degree changes from p to 2 N, ,(u)wZ,
0, the first and last basis functions in every degree are Z(u;,, ) = =
abided by the above principle. According to Eq. (14), Z N, ,(u)w,

the times of computing low-degree basis function N, , will
be effectively decreased. The times of computing low-de-
gree basis function in different degrees through the classi-
cal De Boor-Cox algorithm and the simplified algorithm
are compared in Tab. 1.

Tab.1 Times of computing low-degree basis functions

)4 Classical algorithm Simplified algorithm
p=1 4 2
p=2 18 6
p=3 76 12

4.3 Computing tool path coordinate

The NURBS curves C(u) with weight w; and control
points P, can be obtained by substituting B-spline basis
function N, ,(u) computed by Eq. (14) into Eq. (1).
According to the definition of parametric description, the
coordinate value in the path domain X(u,,,), Y(u,,,),
Z(u,,,) can be computed by

5 Simulation and Analysis

In order to verify the proposed algorithm, the experi-
ments are simulated by Matlab. The parameters of
NURBS curve are as follows: p =2; control points are
pP,(1,2),P(1.5,1), P,(3,3), P,(4,3.5), P, (5,
3), P,(6.5,1), P,(7,2); knot vector U = {0,0,0,
1/5,2/5,3/5,4/5,1,1,1}; weight W={1,1,1,1,1,1,
1}. The interpolator path is shown in Fig. 3.

The machining parameters are given as follows: the in-
terpolator cycle 7=1 ms, the maximum value of feedrate
v, =4 mm/s, the initial feedrate v. =0 mm/s, maximum
chord error £ =1 pm. The feedrate can be computed
through the kinetic model described by Egs. (4) to (7).
The feedrate-time profile is shown in Fig. 4. Figs.3 and 4
show that the feedrate will slow down adaptively if the ra-
dius of curvature of tool path decreases. Fig.5 shows that
the error is less than the maximum chord error and chan-
ges with the feedrate. From Eq. (13), the position para-
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Fig.3 NURBS interpolator path

meter u and its stepping Au can be computed. Their pro-
files are shown in Figs. 6 and 7. These two figures indi-
cate that the stepping of the parameter Au will also de-
crease if the radius of the curvature of the tool path re-
duces. Hence, the position parameter does not depend
linearly on process time. Fig. 8 shows that the jerk and
the acceleration are continuous.

5.0
__4.5¢
T 4.0F ¢
3.5¢
3.0
2.5
2.0
1.5
1.0t — Feedrate with kinetic planning

Feedrate/ (mm * s

0.5 — Feedrate without kinetic planning
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Fig.4 Feedrate profile
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Fig.5 Error profile
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Fig. 6 Position parameter profile
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Fig.8 Acceleration and jerk profile

The nonzero second-degree B-spline basis functions
N, , can be computed based on Eq. (14). The N, ,-u pro-
file is shown in Fig. 9. Based on the computed N,,,
known weight and control points, the coordinate value in
the path domain X (u;,,), Y(u;,,, ), Z(u;,,) can be
computed by Eq. (15). According to these algorithms,
the actual manufacture is tested by MD-3020 3d carving
machine. The maximum cutting feedrate is 3 m/min.
The speed of the main shaft is 2 000 r/min. The manu-
facture time is 2. 54 s. The manufacture material is PVC.
The manufacture process is shown in Fig. 10.

1.01
0. 9& No Ne 2

2070 M2 /7 N2
<

0 0.10.20.3040.50.60.70.80.9 1.0

Position parameter u

Fig.9 The N, ,-u profile

6 Conclusion

The whole process of the NURBS curves machining is
designed based on the present algorithms. The modifica-
tions are presented in terms of feedrate planning, position
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Fig.10  Manufacture processing

parameter computing and B-spline basis function calcula-
tion. Through the modified algorithms, the calculation
times can be reduced, and the calculation speed can be
increased while ensuring precision. Therefore, it is feasi-
ble to apply these algorithms to actual systems.
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