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Abstract: This paper considers the stability analysis of linear
continuous-time systems, and that the dynamic matrices are
affected by uncertain time-varying parameters,
assumed to be bounded, continuously differentiable,
First,
stability for time-varying systems are given by the commonly
used parameter-dependent quadratic Lyapunov function.
Moreover, the use of homogeneous polynomial Lyapunov

which are
with

bounded rates of variation. sufficient conditions of

functions for the stability analysis of the linear system subject
to the time-varying parametric uncertainty is introduced.
Sufficient conditions to determine the sought after Lyapunov
function is derived via a suitable paramenterization of
polynomial homogeneous forms. A numerical example is
given to illustrate that the stability conditions are less
conservative than similar tests in the literature.
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he study of linear time-varying system stability has

been an important issue in control theory for many
years. It is well known that quadratic stability is a suffi-
cient condition for the stability of linear systems with ar-
bitrarily fast time-varying parameters. This condition is
appealing from a numerical point of view mainly because
of its simplicity, and it has been widely used for robust
control and robust filter design, in most cases through
convex problems formulated in terms of linear matrix ine-
qualities (LMIs)"™ . In order to reduce conservative-
ness, more general classes of Lyapunov functions have
been considered, including polyhedral Lyapunov func-
tions” ™, piecewise quadratic Lyapunov functions”', and
homogeneous polynomial Lyapunov functions
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(HPLFs) '™ .

Homogeneous polynomial Lyapunov functions are a vi-
able alternative to the above classes of Lyapunov func-
tions. In fact, that this class of Lyapunov functions can
improve the robust stability results provided by quadratic
Lyapunov functions has been recognized for a long
time' . Recently, it has been shown that for these sys-
tems, robust stability is equivalent to the existence of a
smooth Lyapunov function that turns out to be the sum of
the squares of homogeneous polynomial forms"” ™" .

This paper focuses on the stability analysis of linear
systems where dynamic matrices are affected by uncertain
time-varying parameters with a bounded variation rate.
The problem can be tackled by HPLFs and constructing
HPLFs can be formulated in terms of special convex opti-
mization techniques based on linear matrix inequalities
(LMI). An example here is shown, which proves that
HPLFs are powerful tools for stability analysis.

1 Problem Formulation and Preliminaries

Consider the linear time-varying system

x(1) =A(a(1)x(1) (1)

nxn

where x(f) e R" is the state and A(a(7)) € R"*" is an un-
certain time-varying matrix belonging to the polytope A
given by

N

A= {A(a(t)):A(a(t)) = Y a(nA,

Jj=1

Y =1, an >0 |

j=1
In other words, for all >0 with components, o, (1)
represents time varying unknown parametric perturbations
such that A(a(?)) e co{A,, ...,A,}, where co{ -} de-
notes the convex hull.
The parameters of this system are assumed to have
bounded time-derivatives, i.e€.,

i=12,..

N-1 N-1
Yam|s Yo
i=1 i=

a0 | <p, SN -1

lay(n | <

N-1

Notice that the constraint (2) comes from 2 a,(r) =0
i=1

and it will be used throughout the analysis without loss of



Stability analysis of time-varying systems via parameter-dependent homogeneous Lyapunov functions 303

generality.
The function f,,(x) is a homogeneous form of degree m
in x e R"if

Su(x) = z Cii,... i,,,xll‘ xlz2 .- x:z

iy +. . i, =m

where i, i,, ..., i, are non-negative integers, and c,,
are the weighting coefficient. The form f, (x) is sald to
be positive if £, (x) >0, Vx#0.

The following result provides a sufficient condition for
establishing the existence of an HPLF of degree 2m for
system (1).

Lmma 1" Let A, j.um denote the extended matrix of

A;. If the system of the LMIs
-A7 V>0

J» {m} J, {m}

V>0, -VA

nxn

admits a feasible solution V= V' e R
x""vx" is an HPLP for Eq. (1).

The next lemma presents a sufficient LMI condition for
the robust stability of linear time-varying systems in the
polytopic form of Eq. (1).

Lmma 2" For given real scalars p, >0, i=1,2, ...,
N -1, if there exist symmetric positive definite matrices
P, eR", j=1,2,...,N, satisfying

, then v, (x) =

N-1

A'P, +PA, + Z +p(P, =P, <0 (3)

N-1

AP, +PA, +AP, +PA, + Z £p(P, -P,) <0

j=12 .. N-lik=j+1,..N (4

then the system (1) is asymptotically stable for all time-
varying uncertain parameters inside the polytope A re-
specting the time-derivative constraints (2) with the pa-
rameter dependent Lyapunov matrix given by
N N
= Zaj(t)Pj, Z{aj(t) =1
j= Jj=

P(a(1)) a () =0

2 Main Results

The main result of the paper is a sufficient condition to
determine the sought Lyapunov function, which amounts
to solving an LMI feasibility problem, derived via a suit-
able parameterization of homogeneous polynomial forms.

Theorem 1 For given real scalars p, >0, i=1,2, ...,
N -1, if there exist symmetric positive definite matrices
P, e R", j=1,2,...,N, satisfying

N-1

A'P, +PA, +2; +p, (P, —Py) <0 (5)

N-1
AP, +P,A +AP, +PA, +2Z_] £p.(P, -
P, +2(P,-P,)) <0 (6)
N-1
AP, +P A +A P, +PA, +2) *
i=1
p.(P, =P, +2(P, —-P,)) <0 (7)

AP, +P A, +AP +P,A, +AP, +

Py 1+22 2 p, (P,

SN Pa(n) = Y o} (DP,

+2 Y a;(f) ey (1) Py, then the origin x =0 is a globally

k>j

-P,) <0 (8)

where k=2, ....,N; [ =2

asymptotically stable equilibrium point of system (1) for
the bounded rates of parametric variation (2).

Proof Consider the quadratically parameter-dependent
Lyapunov function v(x) =x"P(a)x with

N

= Y P, +2F a(Da(DP,

=

i j=12 ...N

where P(a(t)) =P(a(t))". It is clear that P(a(?)) is a
positive definite parameter dependent Lyapunov matrix.
The time-derivative ¥(¢) can be given as
v(1) =x" (A(a(1)) "P(a()) +P(a(1)A(al(1)) +
Pla(0))x :xTQx

Observing that

P(a(1))

N

Pla(n) =23 ai(n) ( T a(nd(0)P, +

k=1 i=1

N-1 N
Za,(t)aj(t)PU) +
’:N] 1]:2 N

2Y Y a,(nd,(n ( >

N-1

z Z a (Do ()P, )

i=1 j=i+l

a(Nd,(DP, +

we have
Q(a(n) = Y a)(n (AJP, +P,A, +2F G(nP, ) +

Y Y a(an (AP, +PA +AIP, +PA, +

J=1 k=4
N N-1 N

23 a,(0)(P, +2P) ) + 3 Y a(nai(n (Aijk +
=1 , 1 K=j+

P,A +ATP, +P,A, +22a(t)(P +2P1k)) +
N-2 N-1

N
22 Za([)ak(l)a(l) (A;'I.Pk1+P1<lAj +A:ij+

j=1 k>j 1>k

N

PA, +2 Zdl)(t)PM) 9)

=1 g=1
N N

According to Zaj(t) =1, Zdj(t) =0,
j=1 j=1

N-1
=- 2 40,
=
N-1

can be replaced by z a, () (P,
=1

and o, (1)
the term 2 a,(t) (P, +2P;) in Q(a(1))

_PNk +2(Pij _PNj))'

Taking into account the constraints \ a; (1) \ <p,;, condi-

tions (2) are sufficient to guarantee that Eq. (9) is a neg-
ative definite to all  a,(1) =1.
j=1

A first remark on the conditions of Theorem 1 is that
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note scalar variables are used in the tests (5) to (8) than
in the tests of Lemma 2, which can provide less conserva-
tive evaluations for stability at the price of a slightly high-
er numerical complexity. Notice that if the conditions of
Lemma 1 are feasible, then P,, P,, ..., P, and P, =
P, +P,

* yield a feasible LMIs of Theorem 1. Actually, in

this case, the LMIs of Theorem 1 can be obtained as a
linear combination of (3) and (4). The conditions of
Theorem 1 can provide less conservative evaluations for
stability than the conditions given in Ref. [13], which is
also based on quadratically parameter-dependent Lya-
punov functions, as shown in the sequel by numerical ex-
amples.

In the case N =2 (two vertices) of Theorem 1, a simp-
ler formulation can be obtained as

AP, +P A, £2p, (P, -P,) <0
AP, +P,A +AP, +P A, +2p, (2P, - P, - P,) <0
AP, +P,A, +AP, +P A, £2p (P, +P, -2P,)) <0
AzTPzz +P22Az izpl(Plz -Py) <0

Following the ideas of square matricial representations
(SMR) of homogeneous forms and Lemma 2, a new suf-
ficient condition based on homogeneous parameter-de-
pendent Lyapunov functions is stated in the next theorem.

Theorem 2 let A, and P, . denote the extended
matrix of A; and P, respectively. Then, the system (1)
is asymptotlcally stable if P . ( >0 exists, such that
the following set of LMIs is satisfied:

N-1

A;(/n)Pz/, o TPy A "'221, +0,(Py iy =Py 1) <0
_ (10)
A;T(m}] IM m ¥ P]k tm) ] {m) +AZ‘”' ji. {m} +PU {m) AA {m}
2 Zf 0Py = Puiimy +2(Py oy = Pyiy)) <0
(11)
AP + P A, ) +Ak (m)P,z m TP A t
AluPin + Py +2Z z £0,(Py 1y —Pryy) <0
(12)
A/ (m)P m TPy (m)Aj, (m) +A, PRV P +ij‘(m)Ak, m
22 +p(P, . =Py +2(P,.Mm) ~Py ) <0
(13)
where k=2,3,...,N; [=2,3,...,N
Proof  According to Lemma 1, let v, (x) =x"""

P(a) (m)x("” be the HPLF of the system (1).

By differentiating v,, (x) along the trajectories of the
system and exploiting the properties of SMR, we can ob-
tain

v, (1) =x""(A(a( t))(Tm)P(a( D) +

P(a(D)) , Ala(D)),, +Pla(1),)x"" =
x""QCa(r))x™

With a similar approach as proof of Theorem 1, we can
obtain (10), (11), (12) and (13).

Several remarks can be given on the results above.

Remark 1  The conditions of Theorem 2 are used
more for scalar variables in the tests (10) to (13) than in
the tests of Lemma 2 and Theorem 1, which can provide
less conservative evaluations of stability at the price of a
slightly higher numerical complexity.

Remark 2 The family of HPLFs in the case m =1,
which have been considered by Theorem 1, can be re-
duced to quadratic Lyapunov functions with affine param-
eter dependence. The condition provided by Theorem 2 is
based on the SMR of homogeneous polynomial forms.

3 Numberical Example

Example 1 The following second-order linear differen-
tial equation is considered:

X(1) +Sx(0) + (0> +8p()x(1) =0 (14)

where w, ¢ and § are the parameters and «(¢) is a time-
varying parameter not exactly specified by such that
| p(t) | <1 and | a(r) | <v for all >0, which was
studied in Refs. [14 —15]. It is interesting to see that this
differential equation reduces to the celebrated Mathieu’s
equation with damping for a( ) = coswt. In order to re-
write (14) in the form of (1), it suffices to set N =2,
0.5+0.5p(1)
0.5-0.5p( t)]
0 1
(0 +8) —g‘]’

defining the parameter vector a(?):

Vt=0, the extreme matrices A, = [

0
A, = [ —(w2—52)
determine the region of the plane w x § with 0 <w <4 and
0<d8 <1 such that global asymptotical stability is pre-
served. For numerical calculations, we have considered w
=1 and a small damping represented by ¢ =0.05. Since

1
g]’ and r = w/2. Our goal is to

H=[h h]= [ _rr _rr], then Theorem 2 states that

for each pair (w, ) satisfying the LMIs (10) to (13),
the equilibrium solution of the differential equation (1) is
globally asymptotically stable for all a(¢). Clearly, due
to the fact that a(t) = coswt is a feasible trajectory, the
region of the plane (w, &) determined from the stability
condition of Theorem 2 is a subset of the region of global
asymptotical stability of the Mathieu equation.

Fig. 1 shows the regions of stability below of each
curve provided by Ref. [14] (dashed line), and Theorem
2 in the case m =2 (solid line), respectively, calculated
with an LMI solver that verifies the feasibility of each sta-
bility condition. The same example was also considered
in Ref. [15], which gives the limits of stability corre-
sponding to the region of the plane (w =4 and 6 =0. 23).
The limits of stability corresponding to the region of the
plane are: w =4 and § =0.27. It is to be noted that an
important improvement is when the present result is com-
pared with Ref. [15].
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Fig.1 Stability regions

4 Conclusion

In this paper, we introduce some new stability condi-
tions for time-varying continuous-time polytopic systems
using homogeneous Lyapunov functions. With respect to
previous work on this class of Lyapunov functions, better
results have been obtained by exploiting a complete pa-
rameterization of homogeneous forms of a given degree.
Compared with some previous stability conditions, the
main results via HPDFs in this paper have less conserva-
tism. An numerical example is proposed to show less
conservativeness with some existing results.
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