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Abstract: In order to derive the linac photon spectrum
accurately, both the prior constrained model and the genetic
algorithm (GA) are employed using the measured percentage
depth dose (PDD) data and the Monte Carlo simulated
monoenergetic PDDs, where two steps are involved. First, the
spectrum is modeled as a prior analytical function with two
parameters o and E, optimized with the GA. Secondly, the
linac photon spectrum is
constrained model optimized with the GA. The solved
analytical function in the first step is used to generate initial
solutions for the GA’s first run in this step. The method is
applied to the Varian iX linear accelerator to derive the energy
spectra of its 6 and 15 MV photon beams. The experimental
results show that both the reconstructed spectrums and the
derived PDDs with the proposed method are in good agreement
with those calculated using the Monte Carlo simulation.
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modeled as a discretization

recise photon spectra are important in radiotherapy
P such as dose calculation, delivery of treatment plans
and in designs of beam regulating devices. However, due
to their high energy, the photon beams from the treatment
heads of medical electronic accelerators are difficult to
measure directly. To solve this problem, several indirect
methods have been proposed to determine the photon
spectra. The three prominent indirect techniques include
the Monte Carlo simulation of treatment heads" ™, spec-
tral unfolding from depth-dose measurements"”™ or from
experimental transmission data”'?'. All of the above
methods have advantages and disadvantages'”. Spectral
unfolding from depth-dose measurements has the advan-
tage of using clinical beam parameters to ensure that the
constructed spectrum will produce the proper depth dose
in regions of charged particle equilibrium (CPE). Bloch

et al. ' employed the Cimmino algorithm to determine
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the energy spectra of clinical photon beams. They demon-
strated that the Cimmino algorithm with a small margin,
gives an accurate as well as a physically meaningful spec-
trum, but the margin should be determined carefully to
avoid fluctuation of the unfolded spectrum. The margin
and 1. 6%
spectra unfolding in their experiments. In Ref. [13], we
proposed a method to derive linac photon spectra based on
the generate algorithm ( GA); however, the performance
of the GA depends much on the initial solution, and it is
not easy to achieve the convergence.

In this paper, an alternative method by employing prior
knowledge and the GA is investigated for the reconstruc-
tion of the linac photon spectra from the photon beam
central axis percentage depth dose (PDD) data. Prior
knowledge of spectra can be represented as a function
with a few free parameters as well as some constrained
conditions, making the unfolded spectrum physically
meaningful without fluctuation.

1 Methods and Materials

was found to be between 0. 9% for satisfied

1.1 PDD measurement

With a5 cm x5 cm field and a 100 cm source surface
distance ( SSD), the PDDs for 6 and 15 MV photon
beams from Varian iX linac were measured in a water
phantom ( Blue Phantom 2, IBA). From top to bottom, a
total of 225 voxels were measured, every 1 mm for
depths from 1 to 150 mm, and every 2 mm for depths be-
tween 150 and 300 mm, and the measured results were
expressed as a vector D. The small field size was selected
both to minimize the contribution of contaminating elec-
trons and to achieve lateral charged particle equilibrium

for the photon beam energies used clinically™ .

1.2 PDD simulation of monoenergetic photon beam

Monte Carlo simulations were performed for monoener-
getic photon beams utilizing a photon point source located
at 100 cm SSD with a5 cm x5 cm field, where the depth
dose was evaluated at / =225 depths, every 1 mm for
depths from 1 to 150 mm, and every 2 mm for depths be-
tween 150 and 300 mm. The energy deposition on the
central ray was tallied in cylindrical voxels of 1 mm in
thickness and of 15 mm in radius. The energy range is
from 0 to 20 MeV, with an interval bin of 0. 1 MeV from
0 to 15 MeV, and 0.5 MeV from 15 to 20 MeV, resul-
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ting in the total J = 160 energy bins. EGSnrc ( Electron
Gamma Shower, National Research Council of Canada)
was used for the Monte Carlo simulation of monoenergetic
photon PDDs, where the electron cutoff energy ( ECUT)
and photon cutoff energy (PCUT) were set to be 0.7 and
0.01 MeV, respectively. The simulation history was set to
be 10°, resulting in a statistical uncertainty of less than
0.1% . The J =160 monoenergetic photon PDDs obtained
from simulations was expressed as a matrix A, where A is
the PDD value of monoenergetic photon beam E, at voxel j.

1.3 Reconstruction method

The problem of photon energy spectrum reconstruction
can be expressed as follows:

A®=D (1)

where @ = {$,, ¢,, ..., b, )} represents the photon energy
spectrum, and each element is the weight of the corre-
sponding monoenergetic photon beams.

However, the statistical fluctuations in the Monte Carlo
simulation and/or experimental variations in the measure-
ments make the above problem an ill-posed problem. In
this paper, by incorporating prior knowledge of the pho-
ton spectrum, the above problem is modeled as a discreti-
zation constrained optimization problem, which can be
solved effectively with the GA. Here, we use Matlab’s
gatool to solve this problem.

The GA has been effectively applied in a variety of ap-
plications, such as mathematical problems, medical prob-
lems and engineering problems. The standard GA gener-
ally suggests the use of random solutions as the initial
population to maintain its diversity''"'. Recent research
has shown that the use of initial solutions generated based
on the informed initialization scheme can significantly im-
prove the GA’s performance'” .

Considering the linac photon spectra, its prior knowl-
edge can be modeled as some kind of functions with a

few number of free parameters'®'”’. In this paper, the
following function with two unknown parameters is em-

ployed:

_(In(E/E,)/a) ) )

&(E) = exp( >

where E is the photon energy in MeV; E| is the energy at
which the peak in the spectrum is located; « is the width
of the peak.

Another very important prior knowledge, which can be
used to avoid fluctuation in a reconstructed spectrum, can
be expressed as follows:

0<¢(E) <d(E)
0<¢(E) <d(E)

Thus the reconstruction problem can be defined as the
following constrained optimization problem:

Ei<Ef$EP} (3)

E,>E =E,

min F= |A@-D | (4)
S. t.
0<¢(E) <P(E) E <E<E,
0<¢(E) <d(E) E,>E >E,

where F represents fitness.

Therefore, the reconstruction of photon spectra in-
volves two steps:

1) The unknown two parameters of Eq. (2) are solved
with the GA. The solved function at this stage is used to
generate initial populations for the GA’s first run in the
second optimization step.

2) A further optimization based on the GA is applied to
Eq. (4) to obtain more precise spectra.

2 Results and Discussion

For evaluation, we compare the results of the proposed
method with those from the Monte Carlo simulation.

The comparison between the energy spectra of 6 and 15
MYV photon beams calculated by the Monte Carlo simula-
tion, the analytical function based optimization, and the
proposed two-step methods are shown in Figs. 1 (a) and
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Fig.1 Comparison of spectra with different calculation methods.
(a) 6 MV photon beam; (b) 15 MV photon beam
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calculated using the Monte Carlo simulation and the pro-
posed two steps method, their correlation coefficients are
0.999 894% and 0.999 946% , respectively.

From Figs. 1(a) and (b), we can see that the spectrum
calculated by analytical function based optimization gives
a good approximation of that calculated by the Monte
Carlo simulation, and their peaks are almost at the same
location. The energy spectra of 6 and 15 MV photon
beams reconstructed from the proposed two steps method
agree very well with that calculated by the Monte Carlo
simulation.

The comparison of the PDD calculated from the derived
spectrum with the measured PDD for 6 and 15 MV beams
is shown in Fig. 2. For both 6 and 15 MV beams, the
two peaks of PDD curves are located within 1 mm. For 6
and 15 MV beams, the correlation coefficients of PDD
are 0. 999 91 and 0.999 93, respectively. From Fig. 2,
we can see that these PDDs fit very well for both 6 and 15
MV photon beams, except for a few voxels near the
phantom surface.

This improved spectrum reconstruction method has two
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Fig.2 Comparison of PDDs for 6 and 15 MV beams. (a) 6 MV
photon beam; (b) 15 MV photon beam

advantages over the GA approach investigated before:
1) The usage of prior knowledge, which leads to a bet-

ter convergence, guarantees a higher possibility of achie-
ving a physical realistic solution.

2) The prior-knowledge-based initialization for the sec-
ond step optimization, which is physically close to the re-
alistic spectrum, reduces the optimization space and im-
proves computational efficiency.

3 Conclusion

This study demonstrates that the polyenergetic photon
spectrum of linac can be unfolded well from the measured
PDD data by employing the genetic algorithm with simu-
lated monoenergetic PDDs and an analytical model of the
expected photon spectrum shape. The introduction of both
the analytical model and the constrained conditions as a
prior knowledge for the spectrum reconstruction can avoid
the fluctuation of reconstructed spectrum found in the Ci-
mmino algorithm. The good agreement of spectra and
PDDs between the derived results and the Monte Carlo re-
sults shows that the proposed method is effective and ac-
curate. Further studies will be carried out to apply this
method to other types of medical accelerators used in radi-
ation therapy.
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