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Abstract: This paper puts forward a rigorous approach for a
sensitivity analysis of stochastic user equilibrium with the
elastic demand (SUEED) model. First, proof is given for the
existence of derivatives of output variables with respect to the
perturbation parameters for the SUEED model. Then by taking
advantage of the gradient-based method for sensitivity analysis
of a general nonlinear program, detailed formulae are
developed for calculating the derivatives of designed variables
with respect to perturbation parameters at the equilibrium state
of the SUEED model. This method is not only applicable for a
sensitivity analysis of the logit-type SUEED problem, but also
for the probit-type SUEED problem. The application of the
proposed method in a numerical example shows that the
proposed method can be used to approximate the equilibrium
link flow solutions for both logit-type SUEED and probit-type
SUEED problems when small perturbations are introduced in
the input parameters.
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ensitivity analysis is defined as a technique used to

determine how the different values of independent
variables impact a particular dependent variable under a
given set of assumptions. In network modeling, it is con-
stantly used for estimating the changes of objectives at
macroscopic levels (i. e., network performance) caused
by the variations in the objectives in macrocosmic levels
(i. e., signal splits). The possible application of this
method includes, but is not just restricted to, the first-or-
der equilibrium solution approximation, critical parameter
identification, parameter uncertainty analysis and effec-
tiveness diagnosis.
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The research on sensitivity analysis for traffic assign-
ment models can be traced back to the work done by
Hall'". He investigated the direction of change when per-
turbations are added to the inputs of a user equilibrium
traffic assignment model. Tobin and Friesz'” overcame
the problem of the non-uniqueness of the user equilibrium
path flows by introducing an equivalent restricted program
that has the desired uniqueness properties. Following their
work, Yang"' derived a gradient-based sensitivity analy-
sis formula for network equilibrium problems with elastic
demand. However, this method has several significant
deficiencies that it is only applicable to non-degenerated
point (equilibrium flows should be strictly positive), and
the assumption that the link travel cost increases monoton-
ously with respect to the link flow is also stronger than
necessary. A detailed description of those deficiencies and
the corresponding technique for improvement can be
found in Ref. [4]. For the sensitivity analysis of logit-
based stochastic user equilibrium ( SUE) problem, Ying
and Miyagi' formulated a computationally efficient link-
based algorithm by adopting Dial’s algorithm'. Clark
and Watling!” proposed a more generous method for sen-
sitivity analysis of the SUE assignment model, which is
actually a direct application of the first-order sensitivity
approximation method for a general nonlinear program
proposed by Fiacco'™ . The method can not only observe
the changes of the equilibrium link flows with respect to
uncertainty parameters at logit-based SUE but also can be
equally applied for probit-based SUE.

The aforementioned literature mainly focused on ad-
dressing the sensitivity analysis problem for UE and SUE
assignment models as well as some combination models.
Based on our knowledge, no research has been conducted
on implementing the sensitivity analysis of SUE with the
elastic demand ( SUEED) traffic assignment model. This
paper aims to formulate a method for a sensitivity analysis
of SUEED models with the gradient-based method.

1 SUEED Problem

The SUEED model assumes that, in the equilibrium
state, route or link choices should be such that an SUE is
formed, and, meanwhile, the demand between each O-D
pair (used in the SUE assignment) must be consistent
with travel costs between each O-D pair'”. Maher et
al. ! proposed an equivalent unconstrained mathematical
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program for the SUEED problem, which is formulated as

min Z(q,v) = ZV‘IIG(VQ) - zrltn(x)dx -
2 X8.D.(S) + ¥ ¥ D(q,)D.(S,) +

Y Y[ pl@d- X ¥ a0l
(1)

where a is the link in the network; r is the origin node; s
is the destination node; v, is the link flow on link a; ¢, is
the travel cost on link a; ¢, is the O-D demand between
O-D pair r-s; §,, is the expected perceived O-D travel
time between O-D pair r-s; D, (S,) is the demand func-
tion between O-D pair r-s, and it is a function of S be-
tween O-D pair r-s; D_'(gq,,) is the inverse function of
the O-D demand function.

2 Sensitivity Analysis for SUEED Assignment
Problem

2.1 Sensitivity analysis for general nonlinear pro-

gramming

Fiacco'™ made a significant contribution to the sensitiv-
ity analysis of nonlinear programming.
mxin z2(x, &)
s.t. p(e)
g.(x,&)=0 i
h(x,&) =0 j

1,2, ...,m
1,2,...,n

He proved that for any nonlinear programming with
above form p(¢g), if at an optimal point (x*,0), the fol-
lowing conditions are held: 1) The objective function and
the constraints are twice continuous differentiable in the
neighborhood of (x*,0); 2) The optimal solution has a
strict local uniqueness (the second-order sufficient condi-
tion); 3) Strict complimentary slackness condition is sat-
isfied; 4) The gradient V. g,(x, &) (g,(x,&) =0, u, >0)
and Vxh/.(x, e), VY are linearly independent, then the de-
signed variables are directional derivable with respect to
perturbation parameter ¢ at (x",0), and the formulation
can be obtained as

[V.x V.u Vow]' = -M(e) 'N(e) (2)

where u, is the Lagrangian multiplier associated with the
i-th inequality constraint g,(x, £); V,x is the vector of the
derivative of solutions with respect to parameter & ( di-
mension n); V,u is the m-dimentional vector of derivative
of Lagrangian multipliers with respect to parameter g; w
is the vector of Lagrangian equality multipliers corre-
sponding to equality constraints in p(g); V,w is the n-di-
mentional vector of the derivative of Lagrangian equality
multipliers with respect to parameter £. The close form of
matrices M and N (as function of ¢) in Eq. (2) can be
found in Ref. [7].

2.2 Sensitivity analysis method for SUEED problem

Before developing the formulae for the sensitivity anal-

ysis of the SUEED model, we assume that ¢, ( + ) in
SUEED problem (1) is a monotonic increasing function
and once continuously differentiable with respect to link
flows. With this assumption, it is very clear that condi-
tion 1) in section 2. 1 is satisfied. Maher et al. " proved
that the Hessian matrix of the SUEED function is a posi-
tive definite; therefore, condition 2) is met. Since the
SUEED model is an unconstraint optimization problem,
the solution will automatically satisfy the flow conserva-
tion and nonnegativity of route flow constraints. There-
fore, condition 3) and condition 4 ) are then satisfied
simultaneously. From the above discussions, it can be
seen that Fiacco’s™ method is applicable for calculating
the sensitivity of the output parameters in the SUEED
with respect to input parameters. Since SUEED is formu-
lated as an unconstrained nonlinear program, the terms in
the matrices of M and N will be reduced to V’z(gq,v) for
matrices M and V3,z(q,v) for matrices N, respectively.
Here, x denotes the vector of all input variables; ¢ is a
vector of all O-D demands and v is a vector of all link
flows. In the SUEED model, the solution parameters are
links that flow together with O-D demands; therefore, we
have x = (gq,v). The explicit expressions for the second-
order derivatives of Z(q,v) with respect to the O-D de-
mands and link flows formulated by Maher et al. ' are
given by

0’z ] [ 9’z ]
M(g)=VZ= aquazqm 6vgzazqm
[aqmavh] [ avbava]
NGl B A IREY
where
V?;Z:diag[ _d(i)]“l] (4)
V;.Z=V,S (5)

ViZ=Vt+ Y q,[(Vt-A") (VP )(Vt-A")"] +

Dos

2(VVS)T(diag[ -

s

where S is the vector of all expected perceived O-D travel
times; ¢ is the vector of all link travel times. Assume that
¢ is a perturbed parameter in the SUEED problem. Matrix
N(g) in Eq. (2) is then extended as

T

V. Z(q,v) _[ 0Z 0Z ] %

N S XSZ: -
(e) =V de aqoe  ovoe

Note that

9z _ aD,(S,) (S ac;")dD;l
aq,,0e s, SH\lc, o9e/dg,

rs
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aDm‘ ( SI‘.\\ ) o a v dDrx
TR = P (8)
as iR dg,,

rs

where ¢, denotes the route travel cost on the k-th route
between the O-D pair r-s; R is the set of all routes be-
tween the O-D pair r-s; P, denotes the probability that a
traveler from r to s chooses path k. Eq. (8) can be re-
written in a vector form as

V.Z = diag[i?f] ( 3 (PV.c)) ) v.D"(q) (9)

keR,

where P"is the vector of all the route choice probabilities
between the O-D pair r-s; D' (gq) denotes the vector of
all inverse functions of the O-D demand function. The
mixed derivatives of Z(q,e) with respect to link flow v,
and perturbed parameter ¢ is

aZZ = dzrb azS’A' aer aDrx(Sm)
e = avds = (av aeln(Se) o, T)
as,, aD, (S D, (S,) _ oD, (S,)
2 2 (Drsl ( rx T ) .
O v, de
(10)
Simplifying Eq. (10) yields
o= 2 z”z‘”’fdi_
av de s dv,; R oc! de
"\oD (S, GS
s reR, BC, dg aS,, avb

where §,, is the link-route indicator, §;, =1 if b is a link
on route k; else §;, =0. Eq. (11) can be formulated in a
vector form as

V.Z = Y q,[(At-A")(=VP") V.e] +

2(P”Vgc)m(diag[_%])(VVS) (12)

rs

From the above discussions, we can calculate V2Z by

Eq. (4) to Eq. (6) and%by Eq. (12), and thus the
&

derivatives of equilibrium link flows and O-D demands
with respect to signal splits can be obtained by Eq. (2).

3 Numerical Application

The example network shown in Fig. 1 is used to dem-
onstrate how to apply the sensitivity analysis method.
This network has two O-D pairs,
nodes, of which nodes E and F are signal-controlled in-
tersections. There are three paths for O-D pair AB, that

, route 1; AEB; route 2: AFB and route 3 AEFB, and
only one path, CEFD for O-D pair CD.

The current O-D demands are assumed to be 18 veh/min
and 6 veh/min for O-D pairs AB and CD, respectively.
The link travel cost and its corresponding input data are

seven links and six

Fig.1 The example road network

summarized in Tab. 1. Intersections E and F are supposed
to be controlled by two independent signal splits, A, and
A,. The elastic demand functions for O-D pairs AB and
CD in this numerical example are specified as

AB :DAB(SAB) ZSOGXP( _O'SSAB) (13>

dep =D (Sep) =30exp( -0.28,) (14)

Tab.1 Input data to the example network
Link number 1 2 3 4 5 6 7
Free-flow time £ 2.0 1.0 2.0 3.0 1.0 2.0 1.0

Saturation flow s, 24 30 30 35 24 30 30
2

) |

3.1 Sensitivity of logit-type SUEED problem

Link travel cost

ta(va,/\“):tﬂ[l.0+0.5(

The signal splits are set as A, =A, =A; =4, =0.5 to
start a test. Let § be the discrete parameter in the logit-
type SUEED problem. The numerical results including
equilibrium link flows, O-D demands and the Jacobian
matrix of route choice probabilities calculated at § =1 are
presented as

76.507 7
7.425
7960 13.932
v=|8.044 |, > 060
6.424
7.508
[7.960]
~0.249  0.246  0.003
P¥=| 0.246 -0.249 0.003 ], PP =[1]
0.003  0.003 -0.006

Assume that )| is a perturbed parameter in the road net-
work, and then according to Egs. (3), (4), (5) and
(12), matrix M and matrix N can be calculated corre-
spondingly. Then using Eq. (2),
quilibrium link flow and O-D demand solutions with re-
spect to signal split A, is obtained as

the sensitivity of the e-

V.q 2.759 -0.005 3.838 .7
V‘v] = —M()\,) 'N(A,) = | —=1.079 -0.005 0.048
. 3.784 -1.025 -0.005
(15)
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Eq. (15) has plentiful physical meanings and can be
used to develop a first-order approximation of the per-
turbed solution for small changes in signal splits A,, giv-
en as

V).‘q

[q(A1+AA1)]:[Q()\1)] VAIV]A/\' (16)

V(A +AA) v(A,)

Fig.2 describes the comparison of estimated link flow
calculated by Eq. (16) and the exact link flow. The line-
ar nature of the approximation procedure given here is
clearly evident. The further the signal split from the ini-
tial solution value, the greater the deviation between the
exact and approximate solutions.

8.4
——v, (exact)

- v, (estimated )
8.0 —&—v, (exact)

| ~a&-v, (estimated )

Link flow/(veh + min ')
2
&

¥

6.6 | | 1 |
0.05 0.10 0.15 0.20 0.25 0.30 0.25 0.40

Fig.2 Exact and approximated equilibrium solutions for the
logit-type SUEED ( signal split change )

3. 2  Sensitivity of probit-type SUEED assignment

problem

For the probit-type model, the link travel time is as-
sumed to be normally distributed with a mean equal to the
measured link travel time and with variance that is propor-
tional to the measured link travel time. In other words,

T,~N(t,,at,)

where « is the variance of the perceived travel time over a
road segment of unit travel time. The covariance of route
travel time then will be subject to a multivariate normal
distribution as follows;

C,, ~MVN(tA” ,aA"tA"")

The equilibrium link flows, O-D demands and the Jaco-
bian of route choice probabilities calculated with the MSA
method at « =1, A, =X, =A; =, =0.5 are specified as

r7.4457
8.292
.957
.108 |,
.298
443
.957

_115.741
- [ 7.957

~N 0 N 0

-0.211  0.203  0.008
P¥=]0.204 -0.216 0.013 |, P"=[1]
0.008  0.013  -0.021

Assume that there is a perturbation in the input parame-
ter A,. Similarly, by using the derivatives of Eq. (2),
the sensitivity of the link equilibrate solutions with respect
to input parameter A, can be calculated. The linear ap-
proximation to the solution for a small change in signal
split A, is thus presented as

Qas] r15.7417 T 3.898 7

den 7.957 -0.033

v, 7.449 4.944

v, 8.292 ~1.078

v, |=| 7.957 |+| —0.024 [ar, (17

v, 8.108 0.221

), 7.298 4.709

5 8. 443 ~0.843
A O

Eq. (17) denotes that an increase in signal splits A,
will lead to different change patterns in the output param-
eters. The demand between O-D pair AB and the equilib-
rium flow on link 1 and link 5 will benefit most from the
increased signal splits A, while the equilibrium flow on
link 2 and link 6 are reduced significantly.

According to Eq. (17), the exact and estimated equi-
librium route flow solutions are drawn in Fig. 3. As can
be seen, the estimated route flows are very close to corre-
sponding exact values, which implies significant potential
use in practice. If high accuracy is not requested, the
sensitivity analysis method will be a good alternative to
approximate the equilibrium solutions when changes are
introduced to the network input parameters, which also
saves much effort being required to re-solve the assign-
ment. But it should be noted that the accuracy of the esti-
mated equilibrium patterns is significantly dependent on
the perturbations itself. The larger the perturbation intro-
duced, the greater the divergence between the exact and
approximate solutions will be.

9.6

——v, (exact) e
9.3 ~4--v, (estimated ) N
9. 0~ (exact)

~4-—y, (estimated )
8.7k’ ”

Link flow/(veh * min~1)

1 1 1 1 1 1 ]
.05 0.10 0.15 0.20 0.25 0.30 0.25 0.40
AAy

Fig.3 Exact and approximated equilibrium solutions for prob-
it-type SUEED ( signal split change)
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4 Conclusion

This paper develops a computationally efficient method
for the sensitivity analysis of the SUEED assignment
problem put forward by Maher et al”’. Proof is given
that the SUEED assignment problem satisfies all the con-
ditions required for the sensitivity analysis of a general
nonlinear problem. Explicit expressions are then given for
obtaining the derivatives of equilibrium solutions with re-
spect to input parameters by taking advantage of the gra-
dient-based method. Those expressions are not only ap-
plicable for the sensitivity analysis of the logit-type
SUEED problem but also can be equally applied to the
probit-type SUEED problem. Numerical examples are
presented to demonstrate how to obtain the derivatives of
equilibrium solutions with respect to perturbed parameters
with both logit and probit assumptions. These derivatives
can be used to approximate the changes in solution varia-
bles when the network characteristics are changed slight-
ly. Further research is to explore the applicability and ef-
ficiency of the propose method in various applications
such as critical parameters identification, paradox and
network uncertainty analysis.
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