Journal of Southeast University (English Edition)

Vol. 30, No. 4, pp. 428 —433

Dec. 2014 ISSN 1003—7985

Load-balancing data distribution in publish/subscribe mode

Li Kai"> Wang Yun"?

. «1,2,3
Yin Yi

Yuan Feifei'?

('School of Computer Science and Engineering, Southeast University, Nanjing 211189, China)

(*Key Laboratory of Computer Network and Information Integration of Ministry of Education,
Southeast University, Nanjing 211189, China)

(*School of Computer Science and Engineering, Nanjing Normal University, Nanjing 210046, China)

Abstract: To improve data distribution efficiency, a load-
balancing data distribution (LBDD) method is proposed in
publish/subscribe mode. In the LBDD method, subscribers
are involved in distribution tasks and data transfers while
receiving data themselves. A dissemination tree is constructed
among the subscribers based on MDS, where the publisher acts
The proposed method provides bucket
construction, target selection, and path updates; furthermore,

as the root.
the property of one-way dissemination is proven. That the
average out-going degree of a node is 2 is guaranteed with the
proposed LBDD. The experiments on data distribution delay,
data distribution rate and load distribution are conducted.
Experimental results show that the LBDD method aids in
shaping the task load between the publisher and subscribers
and outperforms the point-to-point approach.

Key words: data distribution; publish/subscribe mode; load
balance; dissemination tree

doi: 10.3969/j. issn. 1003 —7985.2014. 04. 005

n the publish/subscribe mode, subscribers subscribe to
Ithe topics they are interested in and publishers publish
relevant data to those subscribers. When publishers have
new information, a data distribution procedure is
launched to distribute that information to all interested
The publish/subscribe mode relieves the
tight coupling of publishers and their subscribers. With
the data distribution service, neither the publisher nor the
subscribers need to know the exact locations of the other,
which enhances the service’s flexibility in adapting to dy-
namic applications.

To promote transparency between publishers and sub-
scribers, agents are used. These agents play dual roles:
on the one hand, they store the global information of both
the publishers and subscribers; on the other hand, they
actively engage in topic matching and data transfer. Very

often, publishers will often need to distribute information

subscribers.

Received 2014-07-01.

Biography: Li Kai (1979—), male, doctor, lecturer, newlikai@ seu.
edu. cn.

Foundation item: The National Key Basic Research Program of China
(973 Program) .

Citation: Li Kai, Wang Yun, Yin Yi, et al. Load-balancing data distri-
bution in publish/subscribe mode[J]. Journal of Southeast University
(English Edition),2014,30(4): 428 —433. [doi: 10. 3969/j. issn. 1003
—-7985.2014.04.005]

to many subscribers. Thus, the multicast technique is
suitable for fulfilling this task but, unfortunately, applica-
tions are not able to use IP multicast in routers provided
by most Internet service suppliers. Furthermore, a pub-
lish/subscribe system based on the topics must be in
charge of multicast group management. Therefore, the
data distribution service adopts a point-to-point approach
in order to reliably disseminate data to subscribers.

Due to its simplicity, point-to-point dissemination
works relatively well when small amounts of data and few
nodes are involved. However, as applications scale up,
such processing becomes problematic. With the increase
in the number of subscribers and amounts of data, the
publisher becomes a bottleneck due to the heavy load and
it must send data to subscribers one by one. In addition,
most subscribers are in the waiting state (or even starva-
tion) because the publisher sends data sequentially.
Taken as a whole, all of this contributes to poor data dis-
tribution efficiency.

To solve this problem, this paper proposes a load-bal-
ancing data distribution (LBDD) method to disseminate
data in parallel by asking subscribers to undertake a part
in data transfers. Without extra data transfer costs, all the
subscribers receive the topic data and the publisher only
needs to send data directly to a small number of the sub-
scribers, thus clearly reducing the sending load.

How to shape the load between publishers and subscrib-
ers is the main challenge and will be examined later in
this paper. The main contributions of this paper are sum-
marized as follows.

The LBDD method is proposed to support the load bal-
ance in a publish/subscribe system. A dissemination tree
is organized to guarantee that all the subscribers receive
the topic data once and only once. Furthermore, the LB-
DD is proven to have some important properties, inclu-
ding one-way dissemination and depth control.

Both the empirical and simulation results show that the
LBDD method is able to take advantage of the bandwidth
among subscribers and to achieve a load balance.

1 Related Work

In a state-of-the-art publish/subscribe system, the
overlay network is composed of many specific routers.
These routers play the role of node agents; they save sub-
scription information, provide network communication

Load-balancing data distribution in publish/subscribe mode

429

among publishing and subscribing nodes, and conduct
reasonable data transfers in order. To locate specific
nodes, traversal algorithms (such as the flooding algo-
rithm, the matching algorithm, or the gossip and infec-
tion algorithm) are usually used'".
ply broadcast, which is a heavy burden when nodes scale
up. Passing messages by application multicasts has also
been introduced to publish/subscribe systems>™'. JEDI™
constructs an application multicast tree in which each
node agent stores only local topological information; a
complete multicast tree is built by all the agents and re-
duces extra broadcasting costs by choosing the proper path
within the tree. During tree construction, many messages
are required as agents exchange information. This may
make the implementation more complex and necessitate
high tree-maintenance costs.

Publiy'”’ takes advantage of both P2P content dissemi-
nation and the publish/subscribe mode that are based on
node agents. With Publiy, a block data dissemination
strategy is proposed to improve the efficiency of large da-
ta block distribution due to node collaboration. In Publiy,
publishing nodes obtain some subscribing node lists from
agents in several domains. These subscribing nodes be-
have as seed nodes to generate copies of the transferring
data. Thus,
However, it is relatively complicated during agent trav-
ersal when determining seed nodes.

In P2P-based publish/subscribe systems, each node is
both an agent and a client. Generally, these systems con-
struct structured, logical topologies based on a distributed
hash table. SCRIBE'® sets up relationships among nodes

These algorithms ap-

multiple source dissemination is set up.

and resources to locate resources efficiently. Nodes are
categorized by clusters according to their physical dis-
tances. Those in a cluster are organized as a chord"”
ring. The most powerful node in a cluster is selected as
that cluster’s representative. All these representatives
form a super cube. High performance issues in publish/
subscribe systems are also addressed”™ ™.

2 Model

2.1 System model

In the proposed method, the participants of a publish/
subscribe system are categorized into two types: users
(including publishers and subscribers) and agents. Users
either publish or subscribe to data. Agents are in charge
of subscription information maintenance and data transfer.
Each node is equipped with an agent and may have sever-
al users.
agent and a user on a node connects to the local agent.
All the users on a node are managed by the same local
agent.

A publish/subscribe system has n nodes, denoted by
PS={N,,N,,...,N,}. N, maintains all the publishing and
subscription information in the system, which is denoted

Thus, a node behaves as both a user and an

by P, ={p,,Pi.\sPis1s ---» P, }, In which Pj(j5éi) re-
presents a triple (s, pub;, sub,). The parameters s,
pub/., subj stand for the link between N, and N, the pub-
lishing topic set of N;, and the subscription topic set of
N, respectively.

All the agents are fully connected. When a user N, sub-
scribes to a topic ¢, it sends the subscription message to
its local agent. The agent then informs all other agents in
a flooding way. All the agents save all the subscription
information and maintain links among themselves. An
agent determines whether other agents are alive or not de-
pending on periodic heartbeat messages to maintain data
consistency. When a user N, publishes the data of topic ¢,
it also sends that data to its local agent. Upon the deter-
mination of the subscriber destination set, the topic data
is transferred among the related agents until all the sub-
scribers of that topic receive the data.

2.2 Problem statement

For a given set of one publisher and multiple subscrib-
ers, the publisher needs to disseminate data to the sub-
scribers. Therefore, find a solution to effectively alleviate
the publisher’s task load and to guarantee that all sub-
scribers receive the required data.

3 Load-Balancing Data Distribution
3.1 Overview

To send data to a given set of subscribers with the LB-
DD, all the subscribers are first mapped to logical buck-
ets. A topic data ¢t flows in terms of the order of these
buckets. Therefore, a unidirectional property holds,
which guarantees that all the subscribers will receive the
data. Globally, a tree is constructed to disseminate f.
Therefore, the LBDD is composed of three parts: 1)
Bucket construction, which sets up buckets based on a
logical distance; 2) Target selection, which provides a
way for an agent to locally select its destination; and 3)
Path update, which allows an agent to re-compute a path
in case of node failure, joining, or leaving.

3.2 Bucket construction

For any node N,, its IP address is hashed to a 128-bit
sequence with MD5. For simplicity, the highest 32 bits
are selected as the sequence ID Digesti for N,. Due to
MD5’s features, the sequence IDs maintain their random-
ness. Thus, all nodes are mapped to a new 32-bit address
space S. The distance between any two nodes N, and N, is
calculated as distance(N,, N;) = digest,Ddigest;.

Considering all the nodes publishing and subscribing to
topic #, we assume that the source node is in bucket 0.
Any node N, is in bucket m if and only if the distance be-
tween N, and the source node is in the intersection of
[2"°", 2"). N, locally puts all the nodes subscribing to ¢
into buckets. N, constructs an ordered sequence of buck-

430

Li Kai, Wang Yun, Yin Yi, and Yuan Feifei

ets, i. e., Bucket = {bucket,, bucket,, ..., bucket, },
with the distance between them monotonically increasing.
N, itself is in the bucket SelfNo (0 < SelfNo<log,n). A
node N, will be inserted into the local bucket sequence in
N, if and only if bucketNo (the bucket rank of N,) > Self-
No holds. According to the proposed method, only nodes
with a longer distance to the source node can be potential
candidates for N,’s next hop; this is reflected in the
above-mentioned rules regarding which nodes are inserted
into the local bucket sequence in N,. The processing pro-
cedure in N, is listed in Algorithm 1.

Algorithm 1 BucketConstruction(P;, 1)
Input: P,; topic ¢.
Output: The bucket rank of N,.
SelfNo = ComputeBucketNo (s _Digest, SelfDigest);//com-
puting bucket rank for itself
for (peer € P;) {
if peer. TestSubscribe(?) = = true{
BucketNo = ComputeBucketNo(s_Digest, peer. Digest)//
filter the nodes not subscribing to ¢
if BucketNo = = SelfNo{
if peer. digest < SelfDigest

//1in the same bucket as N,
//update the bucket rank
of N;
rank + +; }
else if BucketNo > SelfNo
to a bucket with larger rank

InsertPeerToBucket(peer, BucketNo); }

//insert the new node in-

}

return rank;

3.3 Target selection

Using local information, N, independently computes
and puts subscribers for topic ¢ into corresponding buck-
ets. In this section, we set up some rules for N,’s selec-
tion of nodes to go into the next bucket as its Dest, for the
next hop. N, is in the bucket SelfNo.

Algorithm 2 SelectTargets (SelfBucket)
Input: The specific bucket.
Output: The arranged intersection of nodes as the destination
nodes schedule.
TargetBucket. sort(); //nodes in the bucket are ordered in
increasing order
Schedule = nil; //Initiate the arrangement
ratio = TargetBucket. size() /SelfBucket. size();
for rank =1 to SelfBucket. size()
{LowBound =ratio x (rank — 1) +1;
UpBound = ratio x rank; //determine the boundary
of an intersection
Add the intersection to the schedule; }
End for
return schedule;

More often than not, more than one node is in the
bucket SelfNo. Nodes in the bucket SelfNo are responsi-
ble for transferring data to a subset of Dest,. Therefore, a
mapping relationship f is formed between the nodes in the

buckets SelfNo and Dest,. That is, f :rank—Dest,. Usu-
ally, nodes evenly allocate Dest,. The processing proce-
dure for this is described in Algorithm 2.

3.4 Path update

Usually, a node may join or leave the subscription set
for topic t. Any such change leads to path updates. Each
node periodically sends its heartbeat message to the oth-
ers. If N, checks a heartbeat message timeout, it then up-
dates its local P, and deletes the registration and subscrip-
tion information of the failed node. A node failure is
equal to that node unsubscribing from all topics. There-
fore, a failed node is removed from all paths and all paths
have to be restructured to maintain connectivity.

If a new user wants to join, his/her agent broadcasts its
information to all other agents. Each agent executes Al-
gorithm 3 to update its own path.

Algorithm 3 PathUpdate(Peer,,;)
Input: The failed peer.
BucketNo = ComputeBucketNo (source _Digest, peery,,. Di-

gest);
If BucketNo > SelfNo
{Delete peer,, in BucketNo;
SelectTargets(BucketNo) ;
return;

3.5 Load-balancing property

In the LBDD method, the subscribers also participate
in data transfers as intermediate nodes. Each node is able
to find a path from the source node. Clearly, path depth
and node degrees of intermediate nodes affect data dis-
semination efficiency.

3.5.1 One-way dissemination

Theorem 1 All paths form a tree with the root node
of a publisher.

Proof 1) There is a path between the publisher and
any node N, in bucket m.

This is true because there are finite buckets x (0 <<x <
m -1, x e Z) between the publisher and N,. One and on-
ly one node in each bucket is selected to be an ancestor of
N,. All such nodes plus the publisher and N, form a path
from the publisher to N,.

2) There is no loop in any path.

With Algorithm 1, N, only concerns nodes with larger
bucket ranks. Such nodes are potential destination nodes
for N,. This requires the LBDD method to maintain a uni-
directional property, i.e., from a smaller bucket rank to
a larger bucket rank.

All nodes except the publisher have only one father
node.

According to Algorithm 2, Dest, is cut into several dis-
joint subsets. Each node in the bucket SelfNo is mapped
to only one subset. Therefore, a node in Dest, has only
one father node.

Load-balancing data distribution in publish/subscribe mode

431

In summary, all paths share the publisher as the source
node, and all paths form a tree.

Corollary 1 The data dissemination is one-way be-
cause all the nodes form a dissemination tree.
3.5.2 Depth control

Theorem 2 With the LBDD method,
out-going degree of a node is 2.

Proof The IP address of a node is hashed to a 32-bit
new address space by MD5. Thus,
to the source node, denoted by distance (source, N,) is
also a 32-bit random number. Without the loss of gener-
ality, we assume that distance (source, N,) =a, ay,...d,,
in which @, =0 or 1 and 0<k<31. Since a,,a,,...q,1s a
random number, for YV ke[0,31], there is P(a, =1) =
0.5.

According to the relationship between distance
(source, N,) and bucket rank, N, is in the bucket with a
rank of n(0<n<32) if and only if the highest non-zero

the average

the distance from N,

bit is a,_, in a,,a,,...qa,.
Therefore, the probability of N, being in the bucket n is
as follows:

P, = P(a,, = 1) [[P(a, =0) (1)

The mathematical expectation of the number of nodes
in bucket n is as follows:

31

E, = NP, = NP(a,_, =1)HP(ak =1) (2)

n
k=n

For the same reason, the mathematical expectation of

the number of nodes in bucket (n +1) is as follows:

E,, =NP(a, =1)[[P(a, =1) (3)

E, . /E =2 holds, theoretically, the
number of nodes in bucket (n + 1) is two times that in
bucket n. Thus, the average out-going degree of a node

in bucket n is 2.

which means that,

4 Experiments and Analysis
4.1 Experimental settings

The experimental environment is composed of twelve
PCs and two routers. Each PC is a Lenovo Yangtian
T2900d, equipped with Pentium(R) Dual-Core E6700 @
3.20 GHz and Marvell Yukon 88E8057 PCI-E Gigabit
Ethernet controller. Each router is a D-Link DES1008A
with 24-Port Gigabit Ethernet Switch. Furthermore, each
PC is equipped with an agent. Applications connect to
their local agents. For simplicity, there is one PC acting
as publisher in the environment. Other PCs work as sub-
scribers.
structure is set up.

Two methods are explored in the experiment.
LBDD. The other is point-to-point. The data amount for

Therefore, a one-to-many data distribution

One is

both is 8 GB. The data is sent in slices with a slice size
of 64 KB. Data distribution rate, delay, and load distri-
bution are investigated.

4.2 Experimental results and analysis

1) Data distribution delay

Twelve PCs are involved in the experiment. Their IP
addresses are ". 74, .97, ".234, .90, .98, . 64,
.61, 184, ".72, .88, .44 and . 68, respectively,
where #* stands for the common IP prefix 10.3.17.

All nodes are fully connected. In the point-to-point ap-
proach, the network topology is shown in Fig. 1(a). In
the LBDD method, after operating Algorithms 1 and 2,
the network topology is set up as shown in Fig. 1(b).

.98/ .
*88
234 @ . .97

*.74
/ / *.184
* 97
* 234 *.88

(b)
Fig.1 Topology. (a) In point-to-point mode; (b) In load-balancing
mode

In the point-to-point approach, the data distribution de-
lay from the publisher to all subscribers lasts 7 810 s; in
the LBDD method, the delay is 3 020 s. Since more sub-
scribers are involved in coordinating data dissemination
and improving parallelism in the LBDD method, the de-
lay is significantly reduced.

2) Data distribution rate

The data distribution rate is evaluated by the average
amount of data sent in one second. As the number of sub-
scribers increases in the point-to-point approach, the data
distribution rate decreases because messages are sequen-
tially sent by the publisher to one subscriber at a time.
With the LBDD method,
mains around 24 Mbit/s,

3) Load distribution

In the point-to-point approach, it is the publisher’s task
to send the data to all subscribers. the distri-
bution load is on the publisher. As shown in Fig. 3, when

the data distribution rate re-
as shown in Fig. 2.

Therefore,

432

Li Kai, Wang Yun, Yin Yi, and Yuan Feifei

there are six subscribers, the network load for the pub-
lisher reaches 100% .

—©— Point to point
—=—LBDD

oSO

Publisher’s load/%
5 493 3 g

0
0
30
:
1 1 1 1 1
202 4 6 8 10 12
Number of notes
Fig.2 Data distribution rate
30
—o—Point to point
h —a—LBDD
» 24— - = —a—
=
= 181
2
3
12
£
2
.E 6 -
a
0 1 1 1 1 1
2 4 6 8 10 12

Number of notes

Fig.3 Publisher’s load distribution

With the LBDD method, the network load of the pub-
lisher increases still as the number of subscribers increa-
ses. However, the network load is always under 70%,
which shows that the network load is effectively con-
trolled, thus lightening the publisher’s load.

4.3 Simulation test

To investigate LBDD on a large scale, a simulation test
is conducted. Several hundred IP addresses are randomly
generated. The publisher sends 8 GB of data to the sub-
scribers.

When n is 500, the subscribers are mapped to the
buckets indexed from 24 to 32; this reflects the depth of
the paths. Based on simulation results when n is from 100
to 500, as shown in Tab. 1, the depth of a data distribu-
tion tree is at the intersection of [5, 9], which is a rea-
sonable depth value.

Tab.1 Path depth and number of subscribers
Path depth

Subscribers
100
150
200
250
300
350
400
450
500

O O 00 X 0 3 &N L

As n subscribers need to receive specific topic data, the
minimum n copies of the data have to be sent. With the
constructed dissemination tree, exactly n copies are sent.
According to the copies a node sends, the contribution of
N, can be easily calculated as follows: Contribution rate,
=1/n x the number of copies sent by N,.

Fig. 4 shows the contribution rates of the publisher and
subscribers. As the number of subscribers increases, the
load of data distribution undertaken by the publisher al-
most stays the same and, thus, occupies a lower percent-
age of the contribution. At the same time, the subscribers
collaborate and complete the data distribution. The task
load is decomposed by the subscribers, which prevents
the publisher from becoming a bottleneck during process-
ing.

100 -

—o— Publisher
—&— Subscribers

Contribution rate/%
193
S
T

20+
10

O 1 1 1 1 1 1
1020 40 60 80 100 120 140 160 180 200

Numbers of nodes

Fig.4 Contributions by publishers and subscribers

We should point out that, if the number of subscribers
is less than six, the point-to-point approach is able to
maintain reasonable good data distribution efficiency.
However, its efficiency decreases rapidly as the number
of subscribers increases.

5 Conclusion

Data distribution services are widely applied in publish/
subscribe systems.
point-to-point approach is not acceptable if there are many
subscribers for a specific topic. The main reason for this

Regarding service efficiency, the

is that the publisher has to send data to subscribers se-
quentially, which requires that a portion of the subscribers
wait until they are able to contribute. Thus, a method al-
lowing subscribers to be involved in distribution is pro-
posed and the LBDD is explored. The experimental re-
sults show that the LBDD aids in shaping the task load
between the publisher and subscribers. In future work,
we will explore a load-balancing strategy, in which node
load is dynamically and dramatically changed.

References

[1] Boyd S, Ghosh A, Prabhakar B, et al. Gossip algo-
rithms: design, analysis and applications [C]//Proc of
INFOCOM. Miami, USA, 2005: 1653 —1664.

[2] Fateri S, Ni Q, Taylor G A, et al. Design and analysis of
multicast-based publisher/subscriber models over wireless

Load-balancing data distribution in publish/subscribe mode

433

platforms for smart grid communications [C]//Proc of
IEEE 11th International Conference on Trust, Security
and Privacy in Computing and Communications (Trust-
Com) . Liverpool, UK, 2012:1617 —1623.

[3] Cui J, Xiong N, Park J H, et al. A novel and efficient
source-path discovery and maintenance method for appli-
cation layer multicast[J]. Computers & Electrical Engi-
neering, 2013,39(1):67 —75.

[4] Cugola G, Nitto E D, Fuggetta A. The JEDI event-based
infrastructure and its application to the development of the
OPSS WEMS|J]. [EEE Transactions on Software Engi-
neering, 2001, 27(9): 827 —850.

[5] Kazemzadeh R S, Jacobsen H. Publiy +: a peer-assisted
publish/subscribe service for timely dissemination of bulk
content[C]//Proc of IEEE 32nd International Conference
on Distributed Computing Systems. Macau, China,
2012: 345 -354.

[6] Rowstron A, Kermarrec A M, Castro M, et al. SCRIBE:
the design of a large-scale event notification infrastructure

[C1//Proc of the Third International COST264 Work-
shop, NGC 2001. London, UK, 2001:30 —43.

[7] Stoica I, Morris R, Karger D, et al. Chord: a scalable
peer-to-peer lookup service for internet applications[C]//
Proc of ACM SIGCOMM. San Diego, CA, USA, 2001:
149 —160.

[8] Esposito C, Cotroneo D, Russo S. On reliability in pub-
lish/subscribe services[J]. Computer Networks, 2013,
57(5): 1318 — 1343.

[9] Zhao Y, Wu J. Building a reliable and high performance
publish/subscribe system [J]. Journal of Parallel and
Distributed Computing, 2013,73(4):371 —382.

[10] Diallo M, Sourlas V, Flegkas P, et al. A content-based
publish/subscribe framework for large-scale content deliv-
ery[J]. Computer Networks, 2013, 57(4):924 —943.

[11] Shen L, Shen H, Sapra K. RIAL: resource intensity
aware load balancing in clouds[C]//Proc of IEEE INFO-
COM. Toronto, Canada, 2014: 1294 —1302.

&K/ T REN T HE A ENEES X

1,2
2y

F ot E

12,3
R

% FE'?

("R kA EE TRSER, R 211189)
CABRFHFTIFAMNALEELERES TR T, b 211189)
C HFITERFHIMNEH KSR, & 210046)

WE A TRSBIESLE K/ ATAEX THRE T /@b fi 839869 53 5 & 7 % LBDD. £ LB-
DD 75 ik P, 37 W 7 B R d , LR Am R 454 TAF. RN MD5 Hoik | A A 7 Ao T 1 7 18] i 5 — AR 4 &
B EPEF T AR E. AR THRESL BRFAEBURRRGETE, FH— T TRIELE S L ER.
LBDD 75 ik TARIES A PALE — AN B 69T 3 B A 2. A st 3 5 K 3L iR BB K ik B A i B o A 47
T %%, EHIEE Y, LBDD 7 ik i % A RO M K AR 5 AT I O 69 01 B, 0 KA E S T BB Koy A

KRR A B AR/ AT RAE R R #3750 AR
FE 43S TP391

